1. Resuelve las siguientes ecuaciones:

a) \(2x^4 - 10x^2 + 8 = 0\)
b) \(x + \sqrt{5x+10} = 8\)

Solución:

\[2x^4 - 10x^2 + 8 = 0\]
\[x^4 - 5x^2 + 4 = 0; \quad x^2 = t\]
\[t^2 - 5t + 4 = 0 \Rightarrow t = 4; t = 1\]
\[t = 4 \Rightarrow x^2 = 4 \Rightarrow x = \pm 2\]
\[t = 1 \Rightarrow x^2 = 1 \Rightarrow x = \pm 1\]

\[x + \sqrt{5x+10} = 8\]
\[\sqrt{5x+10} = 8 - x\]
\[5x + 10 = 64 - 16x + x^2\]
\[x^2 - 21x + 54 = 0\]
\[x = \frac{21 \pm \sqrt{441 - 216}}{2} = \frac{21 \pm 15}{2}\]
\[x = 3, \text{ vale.} \quad x = 18, \text{ no vale}\]

2. Resuelve

a) \(\frac{x+1}{x} = \frac{x}{x-1} - 1\)

Solución

\[\frac{x+1}{x} = \frac{x}{x-1} - 1\]
\[(x+1)(x-1) = x^2 - x(x-1)\]
\[x^2 - 1 = x^2 - x^2 + x\]
\[x^2 - x - 1 = 0\]
\[x = \frac{1 \pm \sqrt{1 + 4}}{2} = \frac{1 \pm \sqrt{5}}{2}\]

se puede quedar así

b) \((2x-1)(x+2)^2 \cdot x = 0\)

Solución

\[(2x-1)(x+2)^2 \cdot x = 0\]
\[x = 0\]
\[2x - 1 = 0 \Rightarrow 2x = 1 \Rightarrow x = \frac{1}{2}\]
\[x + 2 = 0 \Rightarrow x = -2\]

3. Resuelve el sistema

\[\begin{align*}
 x - y &= 1 \\
 x^2 + y^2 &= 11 - 3x
\end{align*}\]

Solución:
\[
\begin{align*}
\begin{cases}
x - y = 1 & \Rightarrow y = x - 1 \\
x^2 + y^2 = 11 - 3x \\
x^2 + (x - 1)^2 = 11 - 3x & \Rightarrow y = x - 1 \\
x^2 + x^2 - 2x + 1 = 11 - 3x & \Rightarrow x = \frac{-5}{2} \Rightarrow y = \frac{-5}{2} - 1 = \frac{-5 - 2}{2} = \frac{-7}{2} \\
2x^2 + x - 10 = 0 & \Rightarrow x = -2 \Rightarrow y = -2 - 1 = -3 \\
x = \frac{-1 \pm \sqrt{1 + 80} - 1 + 9}{4} & \\
x = \frac{-10}{4} = \frac{-5}{2} & \quad x = \frac{-8}{4} = -2
\end{cases}
\]

Soluciones: \(\left(\frac{-5}{2}, \frac{-7}{2} \right), (-2,-3) \)

4.- Resuelve el sistema de tres ecuaciones y tres incógnitas:
\[
\begin{align*}
\begin{cases}
2x + y = 8 \\
-x + 3y + 2z = 5 \\
2x - 4y + 6z = 4
\end{cases}
\]

Solución:
\[
\begin{align*}
\begin{cases}
2x + y = 8 \Rightarrow y = 8 - 2x \\
-x + 3y + 2z = 5 \\
2x - 4y + 6z = 4
\end{cases}
\]

5.- Si el lado de un cuadrado aumenta en tres unidades, su área se dobla. Halla el valor exacto de su lado expresando el resultado simplificado.
\[
(x + 3)^2 = 2x^2 \quad \Rightarrow \quad x^2 + 6x + 9 = 2x^2 \quad \Rightarrow \quad x^2 - 6x - 9 = 0
\]
\[
x = \frac{6 \pm \sqrt{36 + 36}}{2} = \frac{6 \pm \sqrt{2.6^2}}{2} = \frac{6 \pm 6 \sqrt{2}}{2} = 3 \pm 3 \sqrt{2} \quad \text{Solución:} \quad \left[3 + 3 \sqrt{2}\right]
\]

6.- Resuelve las siguientes ecuaciones:

a) \(5^{2x+1} - 3 \cdot 5^{2x-1} = 550 \) \quad b) \(\log(2x - 3) + \log(3x - 2) = 2 - \log 25 \)

\[
\begin{align*}
x &= \frac{3}{2} \\
x &= 2, x = \frac{1}{6} \quad \text{pero la segunda no tiene sentido}
\end{align*}
\]