Ejercicio 1.- Resuelve las siguientes ecuaciones: (3 puntos)

\[a) \left(x - \frac{1}{3} \right)^2 + \frac{2}{3}x = \frac{10}{9} \]
\[b) x^4 - 48x^2 - 49 = 0 \]
\[c) 3x^3 - 10x^2 + 9x - 2 = 0 \]
\[d) 2x + \sqrt{6x + 1} = 3 \]
\[e) \frac{x}{x + 1} + \frac{2x}{x - 1} = \frac{15}{4} \]

Ejercicio 2.- Resuelve los siguientes sistemas de ecuaciones: (2 puntos)

\[a) \begin{cases} 2x + y + 1 = 0 \\ x + 1 + \frac{y - 1}{3} + 1 = 0 \end{cases} \]
\[b) \begin{cases} x - y + 3 = 0 \\ x^2 + y^2 = 5 \end{cases} \]

Ejercicio 3.- Resuelve las siguientes inecuaciones: (1 punto)

\[a) x^2 - 4x - 5 < 0 \]

Ejercicio 4.- Resuelve los siguientes sistemas de inecuaciones: (1 puntos)

\[a) \begin{cases} \frac{2x + 5}{3} < x - 1 \\ \frac{x - 1}{3} < \frac{2x - 1}{5} \end{cases} \]

Ejercicio 5.- Por la mezcla de 5 Kg. de pintura verde y 3 Kg. de pintura blanca he pagado 69 €. Calcula el precio de un kilogramo de pintura blanca y de pintura verde sabiendo que si mezclase un kilogramo de cada una el precio de la mezcla sería 15 €. (1,5 puntos)

Ejercicio 6.- Halla las dimensiones de un rectángulo del que conocemos su perímetro, 34 m, y su área, 60 m². (1,5 puntos)
Soluciones del examen del tema 3 de 4° ESO b

1.- a) \[\left(x - \frac{1}{3} \right)^2 + \frac{2}{3} x = \frac{10}{9} \]

Solución:

\[x^2 - \frac{2}{3} x + \frac{1}{9} + \frac{2}{3} x = \frac{10}{9} \rightarrow x^2 + \frac{1}{9} = \frac{10}{9} \rightarrow \]

\[x^2 = \frac{9}{9} \rightarrow x^2 = 1 \rightarrow x = \pm 1 \]

Las soluciones son \(x_1 = 1 \) y \(x_2 = -1 \).

b) \(x^4 - 48 x^2 - 49 = 0 \)

Ecuación bicuadrada; hacemos \(x^2 = z \) y obtenemos:

\[z^2 - 48 z - 49 = 0 \rightarrow z = \frac{48 \pm \sqrt{2304 + 196}}{2} = \frac{48 \pm 50}{2} \]

\[\frac{-2}{2} = -1 \]

Si \(z = -1 \) \(\rightarrow \) \(x^2 = -1 \) \(\rightarrow \) no hay solución real

Si \(z = 49 \) \(\rightarrow \) \(x^2 = 49 \) \(\rightarrow \) \(x = \pm 7 \)

Las soluciones son \(x_1 = 7 \) y \(x_2 = -7 \).

c) \(3x^3 - 10x^2 + 9x - 2 = 0 \)

\[
\begin{array}{c|ccc}
1 & 3 & -10 & 9 & -2 \\
\hline
1 & 3 & -7 & 2 & 0 \\
\end{array}
\]

\[
3x^2 - 7x + 2 = 0 \rightarrow x = \frac{7 \pm 5}{6} \rightarrow x = \frac{1}{3}
\]

Soluciones: \(x_1 = 1; \ x_2 = 2; \ x_3 = \frac{1}{3} \)

d) \(\sqrt{6x + 1} = 3 - 2x \)

Elevaramos ambos miembros al cuadrado:

\(6x + 1 = 9 - 12x + 4x^2 \rightarrow 4x^2 - 18x + 8 = 0 \rightarrow 2x^2 - 9x + 4 = 0 \rightarrow \)

\[x = \frac{9 \pm \sqrt{81 - 32}}{4} = \frac{9 \pm \sqrt{49}}{4} = \frac{9 \pm 7}{4} \rightarrow \frac{2}{4} = \frac{1}{2} \]

\[\frac{16}{4} = 4 \]

Comprobamos las posibles soluciones sobre la ecuación:
2 \cdot \frac{1}{2} + \sqrt{\frac{6}{2} + 1} = 1 + \sqrt{4} = 1 + 2 = 3 \quad \rightarrow \quad x = \frac{1}{2} \quad \text{es solución.}

8 + \sqrt{24 + 1} = 8 + \sqrt{25} = 8 + 5 = 13 \quad \rightarrow \quad x = 4 \quad \text{no es solución.}

La única solución es \(x = \frac{1}{2} \).

e) \quad \frac{x}{x + 1} + \frac{2x}{x - 1} = \frac{15}{4}

\) Multiplicamos ambos miembros por \(4(x+1)(x-1) \):

\[
4x(x-1) + 8x(x+1) = 15(x+1)(x-1) \quad \rightarrow \quad 4x^2 - 4x + 8x^2 + 8x = 15x^2 - 15 \quad \rightarrow \quad 12x^2 + 4x = 15x^2 - 15 \quad \rightarrow \quad 3x^2 - 4x - 15 = 0 \quad \rightarrow \\
\]

\[
x = \frac{4 \pm \sqrt{16 + 180}}{6} = \frac{4 \pm \sqrt{196}}{6} = \frac{4 \pm 14}{6} = \frac{18}{6} = 3 \\
\]

Comprobamos las soluciones:

\[
\frac{3}{3+1} + \frac{6}{3-4} = \frac{3}{4} + \frac{6}{-1} = \frac{3+12}{4} = \frac{15}{4} \quad \rightarrow \quad 3 \quad \text{es solución.}
\]

\[
\frac{-5}{3} + \frac{-10}{3} = \frac{-5}{-3} - \frac{10}{-8} = \frac{5}{2} + \frac{10}{8} = \frac{20+10}{8} = \frac{30}{4} = \frac{15}{6} = \frac{5}{3} \quad \rightarrow \quad \frac{5}{3} \quad \text{es solución.}
\]

Las soluciones son \(x_1 = 3 \) y \(x_2 = -\frac{5}{3} \).

2.- Solución:

d) \quad \begin{cases} 2x + 3y = -3 \\ 3x + 3y - 2 + 6 = 0 \end{cases} \quad \rightarrow \quad \begin{cases} 2x + 3y = -3 \\ 3x + 3y = -2 \end{cases} \quad \rightarrow \quad 3x = -15 \quad \rightarrow \quad x = -3
\]

\(2(-3) + 3y = -3 \quad \rightarrow \quad \frac{3}{3} + y = 3 \quad \rightarrow \quad y = 1 \\
\text{Solución:} \quad x = -3; \quad y = 1
\]

a) \quad \begin{cases} x = y - 3 \\ (y - 3)^2 + y^2 = 5 \end{cases} \quad \rightarrow \quad y^2 - 6y + 9 + y^2 - 5 = 0 \quad \rightarrow \quad 2y^2 - 6y + 4 = 0 \\

\[
y^2 - 3y + 2 = 0 \quad \rightarrow \quad y = \frac{3 \pm \sqrt{1}}{2} \quad \rightarrow \quad \begin{cases} y_1 = 1 \quad \rightarrow \quad x_1 = 1 - 3 = -2 \\ y_2 = 2 \quad \rightarrow \quad x_2 = 2 - 3 = -1 \end{cases}
\]

Soluciones: \(x_1 = -2, \quad y_1 = 1; \quad x_2 = -1, \quad y_2 = 2 \)
3.- Solución

c) \[x^2 - 4x - 5 < 0 \]

\[x^2 - 4x - 5 = 0 \quad \rightarrow \quad x = \frac{4 \pm \sqrt{16 + 20}}{2} = \frac{4 \pm \sqrt{5}}{2} = -1, 5 \]

\[\begin{array}{c|c|c}
\text{No} & \text{Sí} & \text{No} \\
-1 & 5 & \\
\end{array} \]

Solución: \((-1, 5)\)

4.- Solución

\[
\begin{align*}
\frac{2x + 5}{3} < x - 1 & \quad \rightarrow \quad 2x + 5 < 3x - 3 & \quad \rightarrow \quad -x < -8 & \quad \rightarrow \quad x > 8 \\
\frac{x - 1}{3} < \frac{2x - 1}{5} & \quad \rightarrow \quad 5x - 15 < 6x - 3 & \quad \rightarrow \quad -x < 12 & \quad \rightarrow \quad x > -12 \\
\end{align*}
\]

\[x = -12 \quad \frac{12}{8} \quad \text{Solución:} \quad (8, +\infty) \]

5.- Solución

43 Por la mezcla de 5 kg de pintura verde y 3 kg de pintura blanca he pagado 69 €. Calcula el precio de un kilogramo de pintura blanca y de pintura verde sabiendo que si mezclase un kilogramo de cada una el precio de la mezcla sería 15 €.

\[
\begin{align*}
5x + 3y &= 69 \\
x + y &= 15
\end{align*}
\]

\[
\begin{align*}
5x + 3y &= 69 \\
-3x - 3y &= -45
\end{align*}
\]

\[
2x = 24 \quad \rightarrow \quad x = 12
\]

\[
y = 15 - x \quad \rightarrow \quad y = 15 - 12 = 3
\]

La pintura verde cuesta 12 € el kilogramo, y la blanca, 3 €.

6.- Solución

44 Halla las dimensiones de un rectángulo del que conocemos su perímetro, 34 m, y su área, 60 m².

\[
\begin{align*}
x + y &= 17 \\
xy &= 60
\end{align*}
\]

\[
x^2 - 17x + 60 = 0 \quad \rightarrow \quad x = \frac{17 \pm \sqrt{49}}{2} = \frac{17 \pm 7}{2} = < 5 \\
\]

Si \(x = 12 \) \rightarrow \(y = 5 \)

Si \(x = 5 \) \rightarrow \(y = 12 \)

Las dimensiones del rectángulo son 5 m y 12 m.