Ejercicio 1.

Calcula el valor de las expresiones:

a) \[\log_4 \left[\left(\frac{1}{2} \cdot \sqrt[4]{16 \cdot \sqrt[4]{4}} \right) : \sqrt[3]{\frac{1}{32}} \right] \]

b) \[\log_{0.25} 8 + \log_{25} \frac{1}{\sqrt{5}} - \log(0.01)^{-1} \]

da) \[\log_4 \left[\left(\frac{1}{2} \cdot \sqrt[4]{16 \cdot \sqrt[4]{4}} \right) : \sqrt[3]{\frac{1}{32}} \right] = \log_4 \left[\left(2^{-\frac{1}{2}} \cdot 2^{\frac{3}{4}} \cdot 2^\frac{1}{2} \right) : 2^{-\frac{1}{3}} \right] = \log_4 \left[2^{-\frac{1}{4}} \cdot 2^\frac{1}{3} \right] = \log_4 \left[2^\frac{1}{12} \right] = \log_4 2^\frac{1}{4} = \frac{1}{4} \cdot \log_4 2 = \frac{1}{5} \cdot \log_4 4 = \frac{1}{5} \cdot 2 = \frac{2}{5} \]

b) \[\log_{0.25} 8 + \log_{25} \frac{1}{\sqrt{5}} - \log(0.01)^{-1} = \log_4 2^3 + \log_{25} 5^{\frac{1}{2}} - \log 10^2 = 3 \log_4 2 - \frac{1}{2} \log_{25} 5 - 2 = \]

Ejercicio 2.

Resuelve:

a) \[\frac{5 - 2x}{3x - 9} \leq 1 \]

b) \[1 - x = \sqrt{1 - x \sqrt{4 - 7x^2}} \]

a) \[\frac{5 - 2x}{3x - 9} \leq 1 \Rightarrow \frac{5 - 2x}{3x - 9} - 1 \leq 0 \Rightarrow \frac{5 - 2x - 3x + 9}{3x - 9} \leq 0 \Rightarrow \frac{14 - 5x}{3x - 9} \leq 0 \Rightarrow \frac{14 - 5x}{3(x - 3)} \leq 0 \]

entonces \[x \in \left(-\infty, \frac{14}{5} \right] \cup (3, +\infty) \]

<table>
<thead>
<tr>
<th>(\left(-\infty, \frac{14}{5} \right])</th>
<th>(\frac{14}{5})</th>
<th>(\left(\frac{14}{5}, 3 \right])</th>
<th>3</th>
<th>((3, \infty))</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 - 5x</td>
<td>+</td>
<td>0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>x - 3</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>(\frac{14 - 5x}{3(x - 3)})</td>
<td>–</td>
<td>0</td>
<td>+</td>
<td>(\varnothing)</td>
</tr>
</tbody>
</table>
b) \(1 - x = \sqrt{1 - x \sqrt{4 - 7x^2}} \Rightarrow (1 - x)^2 = 1 - x \sqrt{4 - 7x^2} \Rightarrow 1 - 2x + x^2 = 1 - x \sqrt{4 - 7x^2} \Rightarrow \)

\[\Rightarrow \left(x^2 - 2x\right)^2 = \left(-x \sqrt{4 - 7x^2}\right)^2 \Rightarrow x^4 - 4x^3 + 4x^2 = x^2 \left(4 - 7x^2\right) \Rightarrow x^4 - 4x^3 + 4x^2 = 4x^2 - 7x^4 \Rightarrow \]

\[\Rightarrow 8x^4 - 4x^3 = 0 \Rightarrow 4x^3(2x - 1) = 0 \Rightarrow \begin{cases} x = 0 \\ x = \frac{1}{2} \end{cases} \text{ se comprueban las soluciones y ambas son válidas} \]

Ejercicio 3.

Calcula:

a) La siguiente suma infinita: \(\frac{1}{\sqrt{3}} + \frac{1}{3} + \frac{\sqrt{3}}{9} + \frac{1}{9} + \frac{\sqrt{3}}{27} + \frac{1}{27} + \cdots \cdot \cdot \cdot \cdot \cdot \cdot \cdot \)

b) \(\lim_{n \to \infty} \frac{\sqrt{9n^4 - 9}}{3n \sqrt{4n^2 - 4}} \)

\[a) \frac{1}{\sqrt{3}} \cdot \frac{1}{3} \cdot \frac{\sqrt{3}}{9} \cdot \frac{1}{9} \cdot \frac{\sqrt{3}}{27} \cdot \frac{1}{27} \cdot \cdots \text{ es una progresión geométrica de razón } \frac{1}{\sqrt{3}} < 1 \Rightarrow S_n = \frac{a_1}{1 - r} \]

\[= \frac{1}{\sqrt{3} - 1} = \frac{\sqrt{3} - 1}{3 \sqrt{3} - 1} = \frac{1}{\sqrt{3} - 1} \frac{\sqrt{3} - 1}{\sqrt{3} - 1} = \frac{\sqrt{3} - 1}{2} \]

\[b) \lim_{n \to \infty} \frac{\sqrt{9n^4 - 9}}{3n \sqrt{4n^2 - 4}} = \lim_{n \to \infty} \frac{\sqrt{9(n^4 - 1)}}{3n \sqrt{4(n^2 - 1)}} = \lim_{n \to \infty} \frac{3 \sqrt{n^4 - 1}}{6 \sqrt{n^2(n^2 - 1)}} = \lim_{n \to \infty} \frac{1}{2} \frac{\sqrt{n^4 - 1}}{\sqrt{n^2 - n^2}} = \lim_{n \to \infty} \frac{1}{2} \frac{n^4 - 1}{n^4 - n^2} = \frac{n^4 - 1}{n^2} \]

\[= \lim_{n \to \infty} \frac{1}{2} \cdot \frac{1}{1 - \frac{1}{n^4}} = \frac{1}{2} \cdot \frac{1}{1 - 0} = \frac{1}{2} \]
Ejercicio 4.

Prueba que la sucesión de todos los números naturales, que divididos por 7 dan de resto 5, es una progresión aritmética. Halla la expresión del término general y la suma de todos los términos de tres cifras de dicha progresión.

Los números naturales que al dividirlos por 7 dan de resto 5 serán múltiplos de 7 más 5 o múltiplos de 7 menos 2, es decir de la forma 7n + 5 o 7n − 2.

La sucesión 7n + 5 es 12, 19, 26, 33, 40,..... que deja fuera al 5, número natural de resto 5 al dividir por 7.

Entonces \(a_n = 7n - 2 \Rightarrow 5, 12, 19, 26, 33, 40,..... \) es la sucesión pedida, que es una progresión aritmética de diferencia 7.

Ahora tenemos que sumar todos los términos de tres cifras, el primero será \(a_{15} = 7 \cdot 15 - 2 = 103 \) y el último será \(a_{143} = 999 \).

El número de términos que sumamos es 143−15+1=129 y entonces la suma vale:

\[
S = \frac{(103 + 999) \cdot 129}{2} = 71079
\]

Ejercicio 5.

Resuelve las siguientes ecuaciones:

\[a) \ 4 \left(\frac{2^t}{2} + \frac{1}{2^{t+1}} \right) = 33 \quad b) \ \log (x - 1) - \log \sqrt{5 + x} - \log \sqrt{5 - x} = 0 \]

\[
a) \ 4 \left(\frac{2^t}{2} + \frac{1}{2^{t+1}} \right) = 33 \Rightarrow 4 \left(\frac{2^t}{2} + \frac{2}{2^t} \right) = 33 \Rightarrow \text{llamando} \ 2^t = t \Rightarrow 4 \left(\frac{t + 2}{t} \right) = 33 \Rightarrow 4t + \frac{8}{t} = 33
\]

quitando denominadores queda \(4t^2 + 8 = 33t \Rightarrow 4t^2 - 33t + 8 = 0 \Rightarrow \begin{cases} t = \frac{8}{4} \\ t = \frac{1}{4} \end{cases} \)

entonces si \(t = 8 \Rightarrow 2^t = 8 \Rightarrow x = 3 \)

si \(t = \frac{1}{4} \Rightarrow 2^t = \frac{1}{4} \Rightarrow x = -2 \)
b) \(\log (x-1) - \log \sqrt{5+x} - \log \sqrt{5-x} = 0 \Rightarrow \log (x-1) = \log \sqrt{5+x} + \log \sqrt{5-x} \Rightarrow \\
\log (x-1) = \log \left(\sqrt{5+x} \cdot \sqrt{5-x} \right) \Rightarrow \log (x-1) = \log \left(\frac{25-x^2}{x} \right) \Rightarrow x-1 = \frac{25-x^2}{x} \Rightarrow \\
(x-1)^2 = \left(\frac{25-x^2}{x} \right)^2 \Rightarrow x^2 - 2x + 1 = 25 - x^2 \Rightarrow 2x^2 - 2x - 24 = 0 \Rightarrow \\
x^2 - x - 12 = 0 \Rightarrow \begin{cases} x = 4 \\ x = -3 \end{cases} \text{ valor no válido por no verificar la ecuación inicial.}

Ejercicio 6.

- En el polinomio \(2x^3 - \frac{4}{3}x^2 + \frac{5}{6}x + 3m \), ¿qué valor ha de tener \(m \) para que \(\left(x - \frac{1}{2} \right) \) sea un factor?

Después de calcular \(m \) factoriza el polinomio.

- Efectúa las operaciones y simplifica el resultado: \[\frac{x-1}{x+3} \cdot \frac{x^2-1}{x^2-9} \cdot \frac{x^2-2x+1}{x^2-6x+9} \cdot \frac{x^2+6}{x^2-9} \]

Si \(\left(x - \frac{1}{2} \right) \) es un factor de \(p(x) = 2x^3 - \frac{4}{3}x^2 + \frac{5}{6}x + 3m \Rightarrow p(x) \) es divisible por \(\left(x - \frac{1}{2} \right) \Rightarrow \\
\Rightarrow p\left(\frac{1}{2} \right) = 0 \Rightarrow 2 \cdot \left(\frac{1}{2} \right)^3 - \frac{4}{3} \cdot \left(\frac{1}{2} \right)^2 + \frac{5}{6} \cdot \frac{1}{2} + 3m = 0 \Rightarrow \frac{1}{4} - \frac{1}{3} + \frac{5}{12} + 3m = 0 \Rightarrow 3m = -\frac{1}{3} \Rightarrow m = -\frac{1}{9}

Como sabemos que \(p(x) \) es divisible por \(\left(x - \frac{1}{2} \right) \) lo aprovechamos para factorizar:

\[
\begin{array}{c|ccc}
\frac{1}{2} & \frac{2}{1} & \frac{-4}{3} & \frac{5}{6} & \frac{-1}{3} \\
& & 1 & \frac{1}{6} & \frac{1}{3} \\
\hline
& 2 & \frac{-1}{3} & \frac{4}{6} & 0
\end{array}
\]

Entonces \(p(x) = 2x^3 - \frac{4}{3}x^2 + \frac{5}{6}x - \frac{1}{3} \Rightarrow \left(x - \frac{1}{2} \right) \cdot \left(2x^2 - \frac{1}{3}x + \frac{2}{3} \right) \Rightarrow \) buscamos las raíces de \(2x^2 - \frac{1}{3}x + \frac{2}{3} \Rightarrow \\
\Rightarrow 2x^2 - \frac{1}{3}x + \frac{2}{3} = 0 \Rightarrow 6x^2 - x + 2 = 0 \Rightarrow \) que no tiene raíces reales y por tanto es primo.

Y la factorización es \[2x^3 - \frac{4}{3}x^2 + \frac{5}{6}x - \frac{1}{3} = \left(x - \frac{1}{2} \right) \cdot \left(2x^2 - \frac{1}{3}x + \frac{2}{3} \right) \]
Examen de números y álgebra

3/12/2010

\[\frac{x-1}{x+3} \cdot \frac{x^2-1}{x^2-9} \cdot \frac{x^2-2x+1}{x^2+6x+9} + \frac{x^2+6}{x^2-9} = \frac{(x-1)(x^2-1)(x^2+6x+9)}{(x+3)(x^2-9)(x^2-2x+1)} + \frac{x^2+6}{x^2-9} = \]

\[= \frac{(x-1)(x-1)(x+1)(x+3)^2}{(x+3)(x-3)(x+3)(x-1)} + \frac{x^2+6}{x^2-9} = \frac{(x+1)(x+3)}{(x-3)(x+3)} + \frac{x^2+6}{(x^2-9)} = \]

\[= \frac{x^2+4x+3x^2+6}{(x-3)(x+3)} = \frac{2x^2+4x+9}{x^2-9} \]

Ejercicio 7.

Tres números a, b y c, distintos de cero, están en progresión aritmética. Si se aumenta a en 1 unidad o c en dos unidades, resultan progresiones geométricas. Encontrar esos números.

Si \(a, b, c \) es una progresión aritmética se cumple \(c - b = b - a \)

Si \(a + 1, b, c \) es una progresión geométrica se cumple \(\frac{c}{b} = \frac{b}{a+1} \)

Si \(a, b, c + 2 \) es una progresión geométrica se cumple \(\frac{c+2}{b} = \frac{b}{a} \)

\[\begin{align*}
\frac{c-b}{b} &= \frac{b-a}{a+1} \\
\frac{c}{b} &= \frac{b}{a+1} \Rightarrow \quad \frac{a+c}{2} &= b \\
\frac{c+2}{b} &= \frac{b}{a} \Rightarrow \quad (a+1)c &= b^2 \quad a(c+2) &= b^2
\end{align*}\]

\[\begin{align*}
(a+1)c &= \frac{a^2 + c^2 + 2ac}{4} \Rightarrow \quad 4(a+1)c &= a^2 + c^2 + 2ac \\
a(c+2) &= (a+1)c \Rightarrow \quad 4(a+1)2a &= a^2 + (2a)^2 + 2a2a \\
8a^2 + 8a &= a^2 + 4a^2 + 4a^2 \Rightarrow a^2 - 8a = 0 \Rightarrow a(a-8) = 0 \Rightarrow \text{como } a \neq 0 \Rightarrow a = 8
\end{align*}\]

\[c = 16, \quad b = \frac{8+16}{2} = 12; \quad \text{entonces los números en progresión aritmética son} \quad 8, 12, 16\]