PÁGINA 147

REFLEXIONA Y RESUELVE

Extraer fuera de la raíz

■ Saca fuera de la raíz:

a) $\sqrt{-16}$

b) $\sqrt{-100}$

a) $\sqrt{-16} = \sqrt{-1} \cdot \sqrt{16} = 4\sqrt{-1}$

b) $\sqrt{-100} = 10\sqrt{-1}$

Potencias de $\sqrt{-1}$

■ Calcula las sucesivas potencias de $\sqrt{-1}$:

a) $(\sqrt{-1})^3 = (\sqrt{-1})^2(\sqrt{-1}) = \cdots$

b) $(\sqrt{-1})^4$

c) $(\sqrt{-1})^5$

a) $(\sqrt{-1})^3 = (\sqrt{-1})^2(\sqrt{-1}) = (-1) \cdot \sqrt{-1} = -\sqrt{-1}$

b) $(\sqrt{-1})^4 = (\sqrt{-1})^2(\sqrt{-1})^2 = (-1) \cdot (-1) = 1$

c) $(\sqrt{-1})^5 = (\sqrt{-1})^4 \cdot \sqrt{-1} = 1 \cdot \sqrt{-1} = \sqrt{-1}$

¿Cómo se maneja $k \cdot \sqrt{-1}$?

■ Simplifica.

a) $-2\sqrt{-1} + 11\sqrt{-1} - 8\sqrt{-1} - \sqrt{-1}$

b) $5\sqrt{-1} + 2\sqrt{-1} - 10\sqrt{-1} + 3\sqrt{-1}$

c) $8\sqrt{-1} + \frac{2}{5}\sqrt{-1} - \frac{3}{10}\sqrt{-1} - \frac{1}{2}\sqrt{-1}$

a) $-2\sqrt{-1} + 11\sqrt{-1} - 8\sqrt{-1} - \sqrt{-1} = 0 \cdot \sqrt{-1} = 0$

b) $5\sqrt{-1} + 2\sqrt{-1} - 10\sqrt{-1} + 3\sqrt{-1} = 0$

c) $8\sqrt{-1} + \frac{2}{5}\sqrt{-1} - \frac{3}{10}\sqrt{-1} - \frac{1}{2}\sqrt{-1} = \left(\frac{80}{10} + \frac{4}{10} - \frac{3}{10} - \frac{5}{10}\right)\sqrt{-1} = \frac{38}{5}\sqrt{-1}$
Expresiones del tipo $a + b \cdot \sqrt{-1}$

- **Simplifica las siguientes sumas:**
 a) $(−3 + 5 \sqrt{-1}) + (2 − 4 \sqrt{-1}) − (6 \sqrt{-1})$
 b) $(−5)(5 + \sqrt{-1}) − 2(1 − 6 \sqrt{-1})$

 a) $−3 + 5 \sqrt{-1} + 2 − 4 \sqrt{-1} − 6 \sqrt{-1} = −1 − 5 \sqrt{-1}$
 b) $−5(5 + \sqrt{-1}) − 2(1 − 6 \sqrt{-1}) = −3 − 5 \sqrt{-1}$

- **Efectúa las siguientes operaciones combinadas:**
 a) $3(2 − 4 \sqrt{-1}) − 6(4 + 7 \sqrt{-1})$
 b) $8(5 − 3 \sqrt{-1}) + 4(−3 + 2 \sqrt{-1})$

 a) $3(2 − 4 \sqrt{-1}) − 6(4 + 7 \sqrt{-1}) = 6 − 12 \sqrt{-1} − 24 − 42 \sqrt{-1} = −18 − 54 \sqrt{-1}$
 b) $8(5 − 3 \sqrt{-1}) + 4(−3 + 2 \sqrt{-1}) = 40 − 24 \sqrt{-1} − 12 + 8 \sqrt{-1} = 28 − 16 \sqrt{-1}$

Multiplicaciones

- **Efectúa las siguientes multiplicaciones:**
 a) $(4 − 3 \sqrt{-1}) \cdot \sqrt{-1}$
 b) $(5 + 2 \sqrt{-1}) \cdot 8 \sqrt{-1}$
 c) $(5 + 2 \sqrt{-1})(7 − 3 \sqrt{-1})$
 d) $(5 + 2 \sqrt{-1})(5 − 2 \sqrt{-1})$

 a) $(4 − 3 \sqrt{-1}) \cdot \sqrt{-1} = 4 \sqrt{-1} − 3(\sqrt{-1})^2 = 4 \sqrt{-1} − 3(−1) = 3 + 4 \sqrt{-1}$
 b) $(5 + 2 \sqrt{-1}) \cdot 8 \sqrt{-1} = 40 \sqrt{-1} + 16(\sqrt{-1})^2 = −16 + 40 \sqrt{-1}$
 c) $(5 + 2 \sqrt{-1})(7 − 3 \sqrt{-1}) = 35 − 15 \sqrt{-1} + 14 \sqrt{-1} − 6(\sqrt{-1})^2 = 35 + 6 − 1 = 41 − \sqrt{-1}$
 d) $(5 + 2 \sqrt{-1})(5 − 2 \sqrt{-1}) = 25 − 10 \sqrt{-1} + 10 \sqrt{-1} − 4(\sqrt{-1})^2 = 25 + 4 = 29$

Ecuaciones de segundo grado

- **Resuelve:**
 a) $x^2 + 10x + 29 = 0$
 b) $x^2 + 9 = 0$

 a) $x^2 + 10x + 29 = 0 \rightarrow x = \frac{-10 \pm \sqrt{100 − 116}}{2} = \frac{-10 \pm \sqrt{-16}}{2} = \frac{-10 \pm 4 \sqrt{-1}}{2} = −5 \pm 2 \sqrt{-1}$

 $x_1 = −5 + 2 \sqrt{-1}$
 $x_2 = −5 − 2 \sqrt{-1}$

 b) $x^2 + 9 = 0 \rightarrow x^2 = −9 \rightarrow x = \pm \sqrt{-9} = \pm 3 \sqrt{-1}$

 $x_1 = \frac{3 \sqrt{-1}}{2}$
 $x_2 = −\frac{3 \sqrt{-1}}{2}$
1. Representa gráficamente los siguientes números complejos y di cuáles son reales, cuáles imaginarios y, de estos, cuáles son imaginarios puros:

\[5 - 3i; \quad \frac{1}{2} + \frac{5}{4}i; \quad -5i; \quad \sqrt{3}i; \quad 0; \quad -1 - i; \quad -7; \quad 4i\]

- Reales: 7, 0 y -7
- Imaginarios: \(5 - 3i\), \(\frac{1}{2} + \frac{5}{4}i\), -5i, \(\sqrt{3}i\), -1 - i, 4i
- Imaginarios puros: -5i, \(\sqrt{3}i\), 4i

2. Obtén las soluciones de las siguientes ecuaciones y represéntalas:

a) \(z^2 + 4 = 0\)
\[z = \pm \frac{\sqrt{-16}}{2} = \pm \frac{4i}{2} = \pm 2i\]
\[z_1 = 2i, \quad z_2 = -2i\]

b) \(z^2 + 6z + 10 = 0\)
\[z = \frac{-6 \pm \sqrt{36 - 40}}{2} = \frac{-6 \pm \sqrt{-4}}{2} = \]
\[= \frac{-6 \pm 2i}{2} = -3 \pm i, \quad z_1 = -3 - i, \quad z_2 = -3 + i\]
c) \(z^2 = -9 \rightarrow z = \pm \sqrt{-9} = \pm 3i \)
\(z_1 = -3i, \quad z_2 = 3i \)

d) \(z^2 = 9 \rightarrow z = \pm 3 \)
\(z_1 = -3, \quad z_2 = 3 \)

3. Representa gráficamente el opuesto y el conjugado de:

<table>
<thead>
<tr>
<th></th>
<th>a) (3 - 5i)</th>
<th>b) (5 + 2i)</th>
<th>c) (-1 - 2i)</th>
<th>d) (-2 + 3i)</th>
<th>e) (5)</th>
<th>f) (0)</th>
<th>g) (2i)</th>
<th>h) (-5i)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a) Opuesto: (-3 + 5i)</td>
<td>b) Opuesto: (-5 - 2i)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conjugado: (3 + 5i)</td>
<td>Conjugado: (5 - 2i)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
c) Opuesto: $1 + 2i$
Conjugado: $-1 + 2i$

d) Opuesto: $2 - 3i$
Conjugado: $-2 - 3i$

e) Opuesto: -5
Conjugado: 5

f) Opuesto: 0
Conjugado: 0

g) Opuesto: $-2i$
Conjugado: $-2i$

h) Opuesto: $5i$
Conjugado: $5i$
4. Sabemos que $i^2 = -1$. Calcula i^3, i^4, i^5, i^6, i^{20}, i^{21}, i^{22}, i^{23}. Da un criterio para simplificar potencias de i de exponente natural.

$$
\begin{align*}
 i^3 &= -i \\
 i^4 &= 1 \\
 i^5 &= i \\
 i^6 &= -1 \\
 i^{20} &= 1 \\
 i^{21} &= i \\
 i^{22} &= -1 \\
 i^{23} &= -i
\end{align*}
$$

Criterio: Dividimos el exponente entre 4 y lo escribimos como sigue:

$$
i^n = i^{4c + r} = i^{4c} \cdot i^r = (i^4)^c \cdot i^r = 1^c \cdot i^r = i^r
$$

Por tanto, $i^n = i^r$, donde r es el resto de dividir n entre 4.

Página 151

1. Efectúa las siguientes operaciones y simplifica el resultado:

 a) $(6 - 5i) + (2 - i) - 2(-5 + 6i)$
 b) $(2 - 3i) - (5 + 4i) + \frac{1}{2}(6 - 4i)$
 c) $(3 + 2i)(4 - 2i)$
 d) $(2 + 3i)(5 - 6i)$
 e) $(-i + 1)(3 - 2i)(1 + 3i)$
 f) $\frac{2 + 4i}{4 - 2i}$
 g) $\frac{1 - 4i}{3 + i}$
 h) $\frac{4 + 4i}{-3 + 5i}$
 i) $\frac{5 + i}{-2 - i}$
 j) $\frac{1 + 5i}{3 + 4i}$
 k) $\frac{4 - 2i}{i}$
 l) $6 - 3\left(5 + \frac{2}{i}\right)$
 m) $\frac{(-3i)^2(1 - 2i)}{2 + 2i}$

 a) $(6 - 5i) + (2 - i) - 2(-5 + 6i) = 6 - 5i + 2 - i + 10 - 12i = 18 - 18i
 b) $(2 - 3i) - (5 + 4i) + \frac{1}{2}(6 - 4i) = 2 - 3i - 5 - 4i + 3 - 2i = -9i
 c) (3 + 2i)(4 - 2i) = 12 - 6i + 8i - 4i^2 = 12 + 2i + 4 = 16 + 2i
 d) (2 + 3i)(5 - 6i) = 10 - 12i + 15i - 18i^2 = 10 + 3i + 18 = 28 + 3i
 e) $(-i + 1)(3 - 2i)(1 + 3i) = (-3i + 2i^2 + 3 - 2i)(1 + 3i) = (3 - 2 - 5i)(1 + 3i) = (1 - 5i)(1 + 3i) = 1 + 3i - 5i - 15i^2 = 1 + 15 - 2i = 16 - 2i
 f) \frac{2 + 4i}{4 - 2i} = \frac{(2 + 4i)(4 + 2i)}{(4 - 2i)(4 + 2i)} = \frac{8 + 4i + 16i + 8i^2}{16 - 4i^2} = \frac{20i}{16 + 4} = \frac{20i}{20} = i
 g) \frac{1 - 4i}{3 + i} = \frac{(1 - 4i)(3 - i)}{(3 + i)(3 - i)} = \frac{3 - i - 12i + 4i^2}{9 - i^2} = \frac{3 - 13 - 4}{9 + 1} = \frac{-1 - 13i}{10} = -\frac{1}{10} - \frac{13}{10}i

h) \[\frac{4 + 4i}{-3 + 5i} = \frac{(4 + 4i)(-3 - 5i)}{(-3 + 5i)(-3 - 5i)} = \frac{-12 - 20i - 12i - 20i^2}{9 - 25i^2} = \frac{-12 - 32i + 20}{9 + 25} = \frac{8 - 32i}{34} = \frac{8}{34} - \frac{32}{34}i = \frac{4}{17} - \frac{16}{17}i \]

i) \[\frac{5 + i}{-2 - i} = \frac{(5 + i)(-2 + i)}{(-2 - i)(-2 + i)} = \frac{-10 + 5i - 2i + i^2}{4 + 1} = \frac{-10 + 3i - 1}{5} = \frac{-11 + 3i}{5} = \frac{-11}{5} + \frac{3}{5}i \]

j) \[\frac{1 + 5i}{3 + 4i} = \frac{(1 + 5i)(3 - 4i)}{(3 + 4i)(3 - 4i)} = \frac{3 - 4i + 15i - 20i^2}{9 - 16i^2} = \frac{3 + 11i + 20}{9 + 16} = \frac{23 + 11i}{25} = \frac{23}{25} + \frac{11}{25}i \]

k) \[\frac{4 - 2i}{i} = \frac{(4 - 2i)(-i)}{i(-i)} = \frac{-4i + 2i^2}{1} = -4i - 2 = -2 - 4i \]

l) \[6 - 3\left(5 + \frac{2}{5}i\right) = 6 - 15 + \frac{6}{5}i = -9 + \frac{6}{5}i \]

m) \[\frac{(-3i)^2 (1 - 2i)}{(2 + 2i)} = \frac{9i^2 (1 - 2i)}{2(2 + 2i)} = \frac{-9(1 - 2i)}{(2 + 2i)} = \frac{-9 + 18i}{2(2 + 2i)} = \frac{-9 + 18i}{4 + 4i} = \frac{18 + 54i}{8} = \frac{18}{8} + \frac{54}{8}i = \frac{9}{4} + \frac{27}{4}i \]

2. Obtén polinomios cuyas raíces sean:
 a) \(2 + \sqrt{3}i\) y \(2 - \sqrt{3}i\)
 b) \(-3i\) y \(3i\)
 c) \(1 + 2i\) y \(3 - 4i\)

(Observa que solo cuando las dos raíces son conjugadas, el polinomio tiene coeficientes reales).

a) \[[x - (2 + \sqrt{3}i)][x - (2 - \sqrt{3}i)] = \]
 \[= [(x - 2) - \sqrt{3}i][(x - 2) + \sqrt{3}i] = (x - 2)^2 - (\sqrt{3}i)^2 = \]
 \[= x^2 - 4x + 4 - 3i^2 = x^2 - 4x + 4 + 3 = x^2 - 4x + 7 \]

b) \[[x - (-3i)][x - 3i] = [x + 3i][x - 3i] = x^2 - 9i^2 = x^2 + 9 \]

c) \[[x - (1 + 2i)][x - (3 - 4i)] = [(x - 1) - 2i][(x - 3) + 4i] = \]
 \[= (x - 1)(x - 3) + 4(x - 1)i - 2(x - 3)i - 8i^2 = \]
 \[= x^2 - 4x + 3 + (4x - 4 - 2x + 6)i + 8 = x^2 - 4x + 11 + (2x + 2)i = \]
 \[= x^2 - 4x + 11 + 2ix + 2i = x^2 + (-4 + 2i)x + (11 + 2i) \]
3. ¿Cuánto debe valer x, real, para que $(25 - xi)^2$ sea imaginario puro?

$(25 - xi)^2 = 625 + x^2 i^2 - 50xi = (625 - x^2) - 50xi$

Para que sea imaginario puro:

$625 - x^2 = 0 \rightarrow x^2 = 625 \rightarrow x = \pm \sqrt{625} = \pm 25$

Hay dos soluciones: $x_1 = -25$, $x_2 = 25$

4. Representa gráficamente $z_1 = 3 + 2i$, $z_2 = 2 + 5i$. $z_1 + z_2$. Comprueba que $z_1 + z_2$ es una diagonal del paralelogramo de lados z_1 y z_2.

$z_1 + z_2 = 5 + 7i$

\[\text{\textbf{Página 153}}\]

1. Escribe en forma polar los siguientes números complejos:

 a) $1 + \sqrt{3}i$
 b) $\sqrt{3} + i$
 c) $-1 + i$
 d) $5 - 12i$
 e) $3i$
 f) -5

 a) $1 + \sqrt{3}i = 2_{60^\circ}$
 b) $\sqrt{3} + i = 2_{30^\circ}$
 c) $-1 + i = \sqrt{2}_{135^\circ}$
 d) $5 - 12i = 13_{292^\circ}$
 e) $3i = 3_{90^\circ}$
 f) $-5 = 5_{90^\circ}$

2. Escribe en forma binómica los siguientes números complejos:

 a) $5\left(\frac{\pi}{6}\right)\text{ rad}$
 b) 2_{135°
 c) 2_{495°
 d) 3_{240°
 e) 5_{180°
 f) 4_{90°

 a) $5\left(\frac{\pi}{6}\right) = 5 \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}\right) = 5 \left(\frac{\sqrt{3}}{2} + i \frac{1}{2}\right) = \frac{5\sqrt{3}}{2} + \frac{5}{2}i$

 b) $2_{135^\circ} = 2(\cos 135^\circ + i \sin 135^\circ) = 2 \left(-\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2}\right) = -\sqrt{2} + \sqrt{2}i$
c) $2495^\circ = 2135^\circ = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$

d) $3240^\circ = 3(\cos 240^\circ + i \sen 240^\circ) = 3\left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) = -\frac{3}{2} - \frac{3\sqrt{3}}{2}i$

e) $5180^\circ = -5$

f) $490^\circ = 4i$

3. Expresa en forma polar el opuesto y el conjugado del número complejo $z = r \alpha$.
 - Opuesto: $-z = r_{180^\circ} + \alpha$
 - Conjugado: $\bar{z} = r_{360^\circ} - \alpha$

4. Escribe en forma binómica y en forma polar el complejo:

 $z = 8(\cos 30^\circ + i \sen 30^\circ)$

 $z = 8_{30^\circ} = 8(\cos 30^\circ + i \sen 30^\circ) = 8\left(\frac{\sqrt{3}}{2} + i \frac{1}{2}\right) = \frac{8\sqrt{3}}{2} + \frac{8}{2}i = 4\sqrt{3} + 4i$

5. Sean los números complejos $z_1 = 4_{60^\circ}$ y $z_2 = 3_{210^\circ}$.
 a) Expresa z_1 y z_2 en forma binómica.
 b) Halla $z_1 \cdot z_2$ y z_2/z_1, y pasa los resultados a forma polar.
 c) Compara los módulos y los argumentos de $z_1 \cdot z_2$ y z_2/z_1 con los de z_1 y z_2 e intenta encontrar relaciones entre ellos.

 a) $z_1 = 4_{60^\circ} = 4(\cos 60^\circ + i \sen 60^\circ) = 4\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 2 + 2\sqrt{3}i$

 $z_2 = 3_{210^\circ} = 3(\cos 210^\circ + i \sen 210^\circ) = 3\left(-\frac{\sqrt{3}}{2} - i\frac{1}{2}\right) = -\frac{3\sqrt{3}}{2} - \frac{3}{2}i$

 b) $z_1 \cdot z_2 = 2 + 2\sqrt{3}i \left(-\frac{3\sqrt{3}}{2} - \frac{3}{2}i\right) = -3\sqrt{3} - 3i - 9i - 3\sqrt{3}i^2 = -3\sqrt{3} - 12i + 3\sqrt{3} = -12i = 12_{270^\circ}$

 $\frac{z_2}{z_1} = \frac{\left(-\frac{3\sqrt{3}}{2} - \frac{3}{2}i\right)}{(2 + 2\sqrt{3}i)} \left(2 - 2\sqrt{3}i\right)$

 $= \frac{-3\sqrt{3} - 3i + 9i + 3\sqrt{3}i^2}{4 - 12i^2} = \frac{-3\sqrt{3} + 6i - 3\sqrt{3}}{4 + 12} = \frac{-6\sqrt{3} + 6i}{16} = \left(\frac{3}{4}\right)_{150^\circ}$

 c) $z_1 \cdot z_2 = 4_{60^\circ} \cdot 3_{210^\circ} = (4 \cdot 3)_{60^\circ} + 210^\circ = 12_{270^\circ}$

 $\frac{z_2}{z_1} = 3_{210^\circ} = \left(\frac{3}{4}\right)_{210^\circ} - 60^\circ = \left(\frac{3}{4}\right)_{150^\circ}$
1. Efectúa estas operaciones y da el resultado en forma polar y en forma binómica:

a) $1150° \cdot 530°$

b) $645° : 315°$

c) $210° \cdot 140° \cdot 370°$

d) $5(\frac{2\pi}{3})\text{rad} : 160°$

e) $(1 - \sqrt[5]{3}i)^5$

f) $(3 + 2i) + (-3 + 2i)$

\begin{align*}
\text{a)} & \quad 1150° \cdot 530° = 5180° = 5180° = 5(\cos 180° + i \sin 180°) = -5 \\
\text{b)} & \quad 645° : 315° = 230° = 2(\cos 30° + i \sin 30°) = \sqrt{3} + i \\
\text{c)} & \quad 210° \cdot 140° \cdot 370° = 6120° = 6(\cos 120° + i \sin 120°) = -3 + 3\sqrt{3}i \\
\text{d)} & \quad 5(\frac{2\pi}{3})\text{rad} : 160° = 5120° : 160° = 560° = 5(\cos 60° + i \sin 60°) = \frac{5}{2} + \frac{5\sqrt{3}}{2}i \\
\text{e)} & \quad (1 - \sqrt[5]{3}i)^5 = (2300°)^5 = 32(\cos 60° + i \sin 60°) = 16 + 16\sqrt{3}i \\
\text{f)} & \quad 4i = 490°
\end{align*}

2. Compara los resultados en cada caso:

a) $(230°)^3$, $(2150°)^3$, $(2270°)^3$

b) $(260°)^4$, $(2150°)^4$, $(2270°)^4$, $(2330°)^4$

\begin{align*}
\text{a)} & \quad (230°)^3 = 2^3 \cdot 30° = 890° \\
& \quad (2150°)^3 = 2^3 \cdot 150° = 8450° = 890° \\
& \quad (2270°)^3 = 8 \cdot 270° = 8810° = 890° \\
\text{b)} & \quad (260°)^4 = 2^4 \cdot 60° = 16240° \\
& \quad (2150°)^4 = 16600° = 16240° \\
& \quad (2270°)^4 = 161080° = 160° \\
& \quad (2330°)^4 = 161320° = 16240°
\end{align*}

3. Dados los complejos $z = 5_{45°}$, $w = 2_{15°}$, $t = 4i$, obtén en forma polar:

\begin{align*}
\text{a)} & \quad z \cdot t, \quad \text{b)} \quad \frac{z}{w^2}, \quad \text{c)} \quad \frac{z^3}{w \cdot t^2}, \quad \text{d)} \quad \frac{z^5 \cdot w^3}{t}
\end{align*}

\begin{align*}
z & = 5_{45°} \quad w = 2_{15°} \quad t = 4i = 490°
\end{align*}
4. Expresa \(\cos 3\alpha \) y \(\sen 3\alpha \) en función de \(\sen \alpha \) y \(\cos \alpha \) utilizando la fórmula de Moivre. Ten en cuenta que:

\[(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3\]

\[(1\alpha)^3 = 1(\cos \alpha + i \sen \alpha)^3 = \]

\[= \cos^3 \alpha + i 3 \cos^2 \alpha \sen \alpha + 3i^2 \cos \alpha \sen^2 \alpha + i^3 \sen^3 \alpha = \]

\[= \cos^3 \alpha + 3 \cos^2 \alpha \sen \alpha i + 3 \cos \alpha \sen^2 \alpha - i \sen^3 \alpha = \]

\[= (\cos^3 \alpha - 3 \cos \alpha \sen^2 \alpha) + (3 \cos^2 \alpha \sen \alpha - \sen^3 \alpha)i \]

Por otra parte: \((1\alpha)^3 = 1_{3\alpha} = \cos 3\alpha + i \sen 3\alpha \)

Por tanto: \(\cos 3\alpha = \cos^3 \alpha - 3 \cos \alpha \sen^2 \alpha \)

\(\sen 3\alpha = 3 \cos^2 \alpha \sen \alpha - \sen^3 \alpha \)

Página 157

\[\sqrt[6]{1} = \sqrt[6]{1_0} = 1^{(360\circ \cdot k)/6} = 1_{60\circ \cdot k}; \quad k = 0, 1, 2, 3, 4, 5 \]

Las seis raíces son:

\[1_{0\circ} = 1 \]

\[1_{60\circ} = \frac{1}{2} + \frac{\sqrt{3}}{2} i \]

\[1_{120\circ} = -\frac{1}{2} + \frac{\sqrt{3}}{2} i \]

\[1_{180\circ} = -1 \]

\[1_{240\circ} = -\frac{1}{2} - \frac{\sqrt{3}}{2} i \]

\[1_{300\circ} = \frac{1}{2} - \frac{\sqrt{3}}{2} i \]

Representación:
2. Resuelve la ecuación $z^3 + 27 = 0$. Representa sus soluciones.

$$z^3 + 27 = 0 \rightarrow z = \sqrt[3]{-27} = \sqrt[3]{27^{180^\circ}} = 3(180^\circ + 360^\circ \cdot n) / 3 = 3(60^\circ + 120^\circ \cdot n); \quad n = 0, 1, 2$$

$z_1 = 3_{60^\circ} = 3(\cos 60^\circ + i \sen 60^\circ) = 3\left(\frac{1}{2} + i \frac{\sqrt{3}}{2}\right) = \frac{3}{2} + \frac{3\sqrt{3}}{2}i$

$z_2 = 3_{180^\circ} = -3$

$z_3 = 3_{240^\circ} = 3(\cos 240^\circ + i \sen 240^\circ) = 3\left(-\frac{1}{2} - i \frac{\sqrt{3}}{2}\right) = -\frac{3}{2} - \frac{3\sqrt{3}}{2}i$

3. Calcula:

a) $\sqrt[3]{-1}$

Las tres raíces son:

$1_{90^\circ} = i \quad 1_{210^\circ} = -\frac{\sqrt{3}}{2} - \frac{1}{2}i \quad 1_{330^\circ} = \frac{\sqrt{3}}{2} + \frac{1}{2}i$

b) $\sqrt[4]{-8 + 8\sqrt{3}i}$

Las cuatro raíces son:

$2_{30^\circ} = 2\left(\frac{\sqrt{3}}{2} + i \frac{1}{2}\right) = \sqrt{3} + i$

$2_{120^\circ} = 2\left(-\frac{1}{2} + i \frac{\sqrt{3}}{2}\right) = -1 + \sqrt{3}i$

$2_{210^\circ} = 2\left(-\frac{1}{2} - i \frac{\sqrt{3}}{2}\right) = -1 - \sqrt{3}i$

$2_{300^\circ} = 2\left(\frac{\sqrt{3}}{2} - i \frac{1}{2}\right) = \sqrt{3} - i$
c) \(\sqrt[3]{-25} = \sqrt[3]{25 \cdot 180°} = 5(180° + 360° k)/2 = 5(90° + 180° k); \ k = 0, 1\)

Las dos raíces son: \(5_{90°} = 5i; \ 5_{270°} = -5i\)

\[d) \ \sqrt[3]{\frac{-2 + 2i}{1 + \sqrt{3} i}} = \sqrt[3]{\frac{8 \cdot 155°}{2 \cdot 60°}} = \sqrt[3]{2 \cdot 275°} = \sqrt[3]{2 \cdot 120° k}; \ k = 0, 1, 2\]

Las tres raíces son: \(\sqrt[3]{2}; \ \sqrt[3]{2}; \ \sqrt[3]{2}\)

4. Resuelve las ecuaciones:

a) \(z^4 + 1 = 0\)

b) \(z^6 + 64 = 0\)

a) \(z^4 + 1 = 0 \rightarrow z = \sqrt[4]{-1} = \sqrt[4]{1 \cdot 180°} = 1(180° + 360° k)/4 = 1(45° + 90° k); \ k = 0, 1, 2, 3\)

Las cuatro raíces son:

\(1_{45°} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}; \ 1_{135°} = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i; \ 1_{225°} = -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i; \ 1_{315°} = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\)

b) \(z^6 + 64 = 0 \rightarrow z = \sqrt[6]{-64} = \sqrt[6]{64 \cdot 180°} = 2(180° + 360° k)/6 = 2(30° + 60° k); \ k = 0, 1, 2, 3, 4, 5\)

Las seis raíces son:

\(2_{30°} = 2\left(\frac{\sqrt{3}}{2} + i \cdot \frac{1}{2}\right) = \sqrt{3} + 1 \quad 2_{90°} = 2i\)

\(2_{150°} = 2\left(\frac{\sqrt{3}}{2} + i \cdot \frac{1}{2}\right) = -\sqrt{3} + i \quad 2_{210°} = 2\left(-\frac{\sqrt{3}}{2} - i \cdot \frac{1}{2}\right) = -\sqrt{3} - i\)

\(2_{270°} = -2i \quad 2_{330°} = 2\left(\frac{\sqrt{3}}{2} - i \cdot \frac{1}{2}\right) = \sqrt{3} - i\)

5. Comprueba que si \(z\) y \(w\) son dos raíces sextas de 1, entonces también lo son los resultados de las siguientes operaciones:

\(z \cdot w, \ z/w, \ z^2, \ z^3\)

\(z\) y \(w\) raíces sextas de 1 \(\rightarrow z^6 = 1, \ w^6 = 1\)

\((z \cdot w)^6 = z^6 \cdot w^6 = 1 \cdot 1 = 1 \rightarrow z \cdot w\) es raíz sexta de 1.

\(\left(\frac{z}{w}\right)^6 = \frac{z^6}{w^6} = \frac{1}{1} = 1 \rightarrow \frac{z}{w}\) es raíz sexta de 1.

\(z^2 = (z^3)^2 = z^{12} = (z^4)^3 = 1^3 = 1 \rightarrow z^2\) es raíz sexta de 1.

\(z^3 = (z^3)^6 = z^{18} = z^{16} \cdot z^2 = (z^4)^4 \cdot z^2 = 1^4 \cdot 1^2 = 1 \cdot 1 = 1 \rightarrow z^3\) es raíz sexta de 1.
6. El número $4 + 3i$ es la raíz cuarta de un cierto número complejo, z. Halla las otras tres raíces cuartas de z.

$4 + 3i = 5_{360°}^{52°}$

Las otras tres raíces cuartas de z serán:

$5_{360°}^{52°} + 90° = 5_{1260°}^{52°} = -3 + 4i$

$5_{360°}^{52°} + 180° = 5_{2160°}^{52°} = -4 - 3i$

$5_{360°}^{52°} + 270° = 5_{3060°}^{52°} = 3 - 4i$

7. Calcula las siguientes raíces y representa gráficamente sus soluciones:

a) $\sqrt[3]{-9}$

b) $\sqrt[3]{-27}$

c) $\sqrt[3]{2 - 2i}$

d) $\sqrt[3]{\frac{1 - i}{1 + i}}$

e) $\sqrt[5]{\frac{32}{i}}$

f) $\sqrt[3]{8i}$

a) $\sqrt[3]{-9} = \sqrt[3]{9_{180°}} = 3_{(180° + 360°k)/2} = 3_{90° + 180°k}; \quad k = 0, 1$

Las dos raíces son:

$z_{90°} = 3i; \quad z_{270°} = -3i$

b) $\sqrt[3]{-27} = \sqrt[3]{27_{180°}} = 3_{(180° + 360°k)/3} = 3_{60° + 120°k}; \quad k = 0, 1, 2$

Las tres raíces son:

$z_1 = 3_{60°} = 3 \left(\cos 60° + i \sin 60° \right) = 3 \left(\frac{1}{2} + i \frac{\sqrt{3}}{2} \right) = \frac{3}{2} + \frac{3\sqrt{3}}{2}i$

$z_2 = 3_{180°} = -3$

$z_3 = 3_{300°} = 3 \left(\cos 300° + i \sin 300° \right) = 3 \left(\frac{1}{2} - i \frac{\sqrt{3}}{2} \right) = \frac{3}{2} - \frac{3\sqrt{3}}{2}i$
c) \(\sqrt{2} - 2i = \sqrt[3]{8} = \sqrt[3]{2} (\cos 155° + 360° k/3) = \sqrt[3]{2} (\cos 105° + 120° k)\); \(k = 0, 1, 2\)

Las tres raíces son:

\[z_1 = \sqrt[3]{2} \cos 105° = -0.37 + 1.37i\]
\[z_2 = \sqrt[3]{2} \cos 225° = -1 - i\]
\[z_3 = \sqrt[3]{2} \cos 345° = 1.37 - 0.37i\]

\[d) \sqrt[3]{\frac{1 - i}{1 + i}} = \sqrt[3]{\frac{\sqrt{2} (\cos 155° + 360° k/3)}{\sqrt{2} (\cos 45° + 360° k/3)}} = \sqrt[3]{\cos 270°} = \frac{1}{2} (270° + 360° k)/3 = 190° + 120° k; \ k = 0, 1, 2\]

Las tres raíces son:

\[z_1 = \sqrt[3]{\frac{1}{2}} = i\]
\[z_2 = \sqrt[3]{\frac{-1}{2}} + \frac{1}{2} i\]
\[z_3 = \sqrt[3]{\frac{-1}{2}} - \frac{1}{2} i\]

\[e) \sqrt[5]{\frac{32}{i}} = \sqrt[5]{\frac{32 (1 - i)}{i (1 - i)}} = \sqrt[5]{32i} = \sqrt[5]{32} = \sqrt[5]{2 (\cos 90° + 360° k)/5} = 2^{(90° + 72° k)}; \ k = 0, 1, 2, 3, 4\]

Las cinco raíces son:

\[z_1 = 2^{18°} = 1.9 + 0.6i\]
\[z_2 = 2^{90°} = 2i\]
\[z_3 = 2^{162°} = -1.9 + 0.6i\]
\[z_4 = 2^{234°} = -1.2 - 1.6i\]
\[z_5 = 2^{306°} = 1.2 - 1.6i\]

\[f) \sqrt[3]{8i} = \sqrt[3]{8 (90°)} = 2^{(90° + 360° k)/3} = 2^{(30° + 120° k)}; \ k = 0, 1, 2\]

Las tres son:

\[z_1 = 2^{30°}\]
\[z_2 = 2^{150°}\]
\[z_3 = 2^{270°}\]
1. Pon la ecuación o inequación que caracteriza los siguientes recintos o líneas:

Después de las representaciones gráficas, se describe con palabras cada una de las familias (“son los números complejos cuya parte real vale ...”) y se da un representante de cada una de ellas.

2. Representa:

Después de las representaciones gráficas, se describen las condiciones de las ecuaciones o inequaciones.

Página 158

LENGUAJE MATEMÁTICO

1. Pon la ecuación o inequación que caracteriza los siguientes recintos o líneas:

2. Representa:
PARA PRACTICAR

Números complejos en forma binómica

1 Calcule:
 a) \((3 + 2i) (2 - i) - (1 - i) (2 - 3i)\)
 b) \(3 + 2i (-1 + i) - (5 - 4i)\)
 c) \(-2i - (4 - i)5i\)
 d) \((4 - 3i) (4 + 3i) - (4 - 3i)^2\)

 a) \((3 + 2i) (2 - i) - (1 - i) (2 - 3i) = 6 - 3i + 4i - 2i^2 - 2 + 3i + 2i - 3i^2 =\)
 \[= 6 - 3i + 4i + 2 - 2 + 3i + 2i + 3 = 9 + 6i\]

 b) \(3 + 2i (-1 + i) - (5 - 4i) = 3 - 2i + 2i^2 - 5 + 4i = 3 - 2i - 2 - 5 + 4i = -4 + 2i\)

 c) \(-2i - (4 - i)5i = -2i - 20i + 5i^2 = -22i - 5 = -5 - 22i\)

 d) \((4 - 3i) (4 + 3i) - (4 - 3i)^2 = 16 - (3i)^2 - 16 - 9i^2 + 24i =\)
 \[= 16 + 9 - 16 + 9 + 24i = 18 + 24i\]

2 Calcule en forma binómica:
 a) \(\frac{(3 + 3i) (4 - 2i)}{2 - 2i}\)
 b) \(\frac{-2 + 3i}{(4 + 2i) (-1 + i)}\)
 c) \(\frac{2 + 5i}{3 - 2i} (1 - i)\)
 d) \(\frac{1 + i}{2 - i} + \frac{-3 - 2i}{1 + 3i}\)

 a) \(\frac{(3 + 3i) (4 - 2i)}{2 - 2i} = \frac{12 - 6i + 12i - 6i^2}{2 - 2i} = \frac{18 + 6i}{2 - 2i} = \frac{(18 + 6i) (2 + 2i)}{(2 - 2i) (2 + 2i)} =\)
 \[= \frac{36 + 36i + 12i - 12}{4 + 4} = \frac{24 + 48i}{8} = 3 + 6i\]

 b) \(\frac{-2 + 3i}{(4 + 2i) (-1 + i)} = \frac{-2 + 3i}{-4 + 4i - 2i - 2} = \frac{-2 + 3i}{-6 + 2i} = \frac{(-2 + 3i) (-6 - 2i)}{(-6 + 2i) (-6 - 2i)} =\)
 \[= \frac{12 + 4i - 18i + 6}{36 + 4} = \frac{18 - 14i}{40} = \frac{9 - 7i}{20} = \frac{9}{20} - \frac{7i}{20}\]

 c) \(\frac{2 + 5i}{3 - 2i} (1 - i) = \frac{2 - 2i + 5i + 5}{3 - 2i} = \frac{7 + 3i}{3 - 2i} = \frac{(7 + 3i) (3 + 2i)}{(3 - 2i) (3 + 2i)} =\)
 \[= \frac{21 + 14i + 9i - 6}{9 + 4} = \frac{15 + 23i}{13} = \frac{15}{13} + \frac{23}{13}i\]
3 Dados los números complejos \(z = 1 - 3i \), \(w = -3 + 2i \), \(t = -2i \), calcula:

a) \(zw t \)

\[
zw t = (1 - 3i) (-3 + 2i) (-2i) = (-3 + 2i + 9i - 6i^2)(-2i) =
\]
\[
= (3 + 11i) (-2i) = 6i - 22i^2 = 22 - 6i
\]

b) \(zt - w(t + z) \)

\[
zt - w(t + z) = (1 - 3i) (-2i) - (-3 + 2i) (-2i + 1 - 3i) =
\]
\[
= (-2i + 6i^2) - (-3i + 2i)(1 - 5i) = (-6 - 2i) - (-3 + 2i)(1 - 5i) =
\]
\[
= (-6 - 2i) - (-3 + 15i + 2i - 10i^2) = (-6 - 2i) - (7 + 17i) = -13 - 19i
\]

c) \(\frac{w}{z} t \)

\[
\frac{w}{z} t = \frac{-3 + 2i}{1 - 3i} (-2i) = \frac{6i - 4i^2}{1 - 3i} = \frac{(4 + 6i)(1 + 3i)}{1^2 - (3i)^2} =
\]
\[
= \frac{4 + 12i + 6i + 18i^2}{1 + 9} = \frac{-14 + 18i}{10} = \frac{-7}{5} + \frac{9}{5}i
\]

d) \(\frac{2z - 3t}{w} \)

\[
\frac{2z - 3t}{w} = \frac{2(1 - 3i) - 3(-2i)}{-3 + 2i} = \frac{2 - 6i + 6i}{-3 + 2i} = \frac{2(-3 - 2i)}{(-3)^2 - (2i)^2} =
\]
\[
= \frac{-6 - 4i}{9 + 4i} = \frac{6}{13} - \frac{4}{13}i
\]

e) \(\frac{3z + it}{w} \)

\[
\frac{3z + it}{w} = \frac{3(1 - 3i) + i(-2i)}{3} (-3 + 2i) = \frac{3 - 9i + 2i}{3} (-3 + 2i) =
\]
\[
= \left(\frac{5}{3} - 3i\right) (-3 + 2i) = -5 + \frac{10}{3}i + 9i - 6i^2 = 1 + \frac{37}{3}i
\]

f) \(\frac{z^2 - wt^2}{2} \)

\[
\frac{z^2 - wt^2}{2} = \frac{(1 - 3i)^2 - (-3 + 2i)(-2i)^2}{2} = \frac{1 - 6i + 9i^2 - (-3 + 2i)4}{2} =
\]
\[
= \frac{-8 - 6i - 12 + 8i}{2} = \frac{-20}{2} + \frac{2}{2}i = -10 + i
\]
4 Calcula:

a) \(i^{37} = i^1 = i\)
b) \(i^{126} = i^2 = -1\)
c) \(i^{-7} = \frac{1}{i^7} = \frac{1}{-i} = i\)
d) \(i^{64} = i^0 = 1\)
e) \(i^{-216} = \frac{1}{i^{216}} = \frac{1}{i^0} = \frac{1}{1} = 1\)

5 Dado el número complejo \(z = \frac{-1}{2} + \frac{\sqrt{3}}{2}i\), prueba que:

a) \(1 + z + z^2 = 0\)
b) \(\frac{1}{z} = z^2\)

a) \(z^2 = \left(\frac{-1}{2} + \frac{\sqrt{3}}{2}i\right)^2 = \frac{1}{4} + \frac{\sqrt{3}}{4}i^2 - \frac{\sqrt{3}}{4}i = \frac{1}{4} - \frac{3}{4} - \frac{\sqrt{3}}{2}i = -\frac{2}{4} - \frac{\sqrt{3}}{2}i = -\frac{1}{2} - \frac{\sqrt{3}}{2}i\)

\(1 + z + z^2 = 1 + \left(\frac{-1}{2} + \frac{\sqrt{3}}{2}i\right) + \left(\frac{-1}{2} + \frac{\sqrt{3}}{2}i\right) = 1 - \frac{1}{2} + \frac{\sqrt{3}}{2}i - \frac{1}{2} - \frac{\sqrt{3}}{2}i = 0\)

b) \(\frac{1}{z} = \frac{1}{\frac{-1}{2} + \frac{\sqrt{3}}{2}i} = \frac{1}{-1 + \sqrt{3}i} = \frac{2}{-1 + \sqrt{3}i} = \frac{2(-1 - \sqrt{3}i)}{(-1 + \sqrt{3}i)(-1 - \sqrt{3}i)} = \frac{2(-1 - \sqrt{3}i)}{1 + 3} = \frac{2(-1 - \sqrt{3}i)}{4} = \frac{-1 - \sqrt{3}i}{2} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i\)

\(z^2 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i\) (lo habíamos calculado en a)

Por tanto: \(\frac{1}{z} = z^2\)

Igualdad de números complejos

6 Calcula \(m\) y \(n\) para que se verifique la igualdad \((2 + mi) + (n + 5i) = 7 - 2i\).

\((2 + mi) + (n + 5i) = 7 - 2i\)
\((2 + n) + (m + 5)i = 7 - 2i\)
\[\begin{cases} 2 + n = 7 \\ m + 5 = -2 \end{cases}\]
\[\begin{align*} m &= 5 \\ n &= 7 \end{align*}\]
7 Determina \(k \) para que el cociente \(\frac{k + i}{1 + i} \) sea igual a \(2 - i \).

\[
\frac{k + i}{1 + i} = \frac{(k + i)(1 - i)}{(1 + i)(1 - i)} = \frac{k - ki + i + 1}{1 + 1} = \frac{(k + 1) + (1 - k)i}{2} = \frac{k + 1}{2} + \frac{1 - k}{2}i
\]

\(i = 2 - i \rightarrow \)

\[
\begin{cases}
\frac{k + 1}{2} = 2 \rightarrow k = 3 \\
\frac{1 - k}{2} = -1 \rightarrow k = 3
\end{cases}
\]

Por tanto, \(k = 3 \).

8 Calcula \(a \) y \(b \) de modo que se verifique:

\[
(a + bi)^2 = 3 + 4i
\]

Desarrolla el cuadrado; iguala la parte real a \(3 \), y la parte imaginaria a \(4 \).

\[
(a + bi)^2 = 3 + 4i
\]

\[
a^2 + b^2 + 2abi = 3 + 4i
\]

\[
a^2 - b^2 + 2abi = 3 + 4i \rightarrow \begin{cases} a^2 - b^2 = 3 \\
2ab = 4\end{cases}
\]

\[
b = \frac{2}{2a} = \frac{2}{a}
\]

\[
a^2 - \left(\frac{2}{a}\right)^2 = 3 \rightarrow a^2 - \frac{4}{a^2} = 3 \rightarrow a^4 - 4 = 3a^2 \rightarrow a^4 - 3a^2 - 4 = 0
\]

\[
a^2 = \frac{3 \pm \sqrt{9 + 16}}{2} = \frac{3 \pm 5}{2} \rightarrow \begin{cases} a^2 = 4 \rightarrow a = \pm 2 \\
a^2 = -1 \text{ (no vale)}\end{cases}
\]

\[
a = -2 \rightarrow b = -1
\]

\[
a = 2 \rightarrow b = 1
\]

9 Dados los complejos \(2 - ai \) y \(3 - bi \), halla \(a \) y \(b \) para que su producto sea igual a \(8 + 4i \).

\[
(2 - ai)(3 - bi) = 8 + 4i
\]

\[
6 - 2bi - 3ai + abi^2 = 8 + 4i
\]

\[
6 - 2bi - 3ai - ab = 8 + 4i
\]

\[
(6 - ab) + (-2b - 3a)i = 8 + 4i
\]

\[
\begin{cases} 6 - ab = 8 \\
-2b - 3a = 4
\end{cases}
\]

\[
b = \frac{-4 + 3a}{-2}
\]
6 - a\left(\frac{4 + 3a}{-2}\right) = 8 \implies 6 + \frac{4a + 3a^2}{2} = 8

\frac{4a + 3a^2}{2} = 2 \implies 4a + 3a^2 = 4 \implies 3a^2 + 4a - 4 = 0

a = \frac{-4 \pm \sqrt{16 + 48}}{6} = \frac{-4 \pm 8}{6}

\begin{align*}
 a &= \frac{4}{6} = \frac{2}{3} \implies b = -3 \\
 a &= \frac{-12}{6} = -2 \implies b = 1
\end{align*}

10 Calcula el valor de a y b para que se verifique:

$$a - 3i = \frac{2 + bi}{5 - 3i}$$

$$a - 3i = \frac{2 + bi}{5 - 3i}$$

$$(a - 3i) (5 - 3i) = 2 + bi$$

$$5a - 3ai - 15i - 9 = 2 + bi$$

$$(5a - 9) + (-3a - 15)i = 2 + bi$$

$$\begin{align*}
 5a - 9 &= 2 \\
 -3a - 15 &= b
\end{align*}$$

$$\begin{align*}
 a &= 11/5 \\
 b &= -108/5
\end{align*}$$

11 Halla el valor de b para que el producto $(3 - 6i) (4 + bi)$ sea un número:

a) Imaginario puro.

$$(3 - 6i) (4 + bi) = 12 + 3bi - 24i + 6b = (12 + 6b) + (3b - 24)i$$

a) $12 + 6b = 0 \implies b = -2$

b) $3b - 24 = 0 \implies b = 8$

12 Determina a para que $(a - 2i)^2$ sea un número imaginario puro.

$$(a - 2i)^2 = a^2 + 4i^2 - 4ai = (a^2 - 4) - 4ai$$

Para que sea imaginario puro, ha de ser:

$$a^2 - 4 = 0 \implies a = \pm 2 \implies a_1 = -2, \ a_2 = 2$$

13 Calcula x para que el resultado del producto $(x + 2 + ix) (x - i)$ sea un número real.

$$(x + 2 + ix) (x - i) = x^2 - xi + 2x - 2i + x^2i - xi^2 =

= x^2 - xi + 2x - 2i + ix^2 + x = (x^2 + 3x) + (x^2 - x - 2)i$$

Para que sea real, ha de ser:

$$x^2 - x - 2 = 0 \implies x = \frac{1 \pm \sqrt{1 + 8}}{2} = \frac{1 \pm 3}{2} \implies x_1 = -1, \ x_2 = 2$$
Números complejos en forma polar

14 Representa estos números complejos, sus opuestos y sus conjugados. Expresalos en forma polar.

- a) $1 - i$
- b) $-1 + i$
- c) $\sqrt{3} + i$
- d) $-\sqrt{3} - i$
- e) -4
- f) $2i$
- g) $-\frac{3}{4}i$
- h) $2 + 2\sqrt{3}i$

a) $1 - i$
- Opuesto: $-1 + i = 215^\circ$
- Conjugado: $1 + i = 45^\circ$

b) $-1 + i$
- Opuesto: $1 - i = 135^\circ$
- Conjugado: $-1 - i = 225^\circ$

c) $\sqrt{3} + i$
- Opuesto: $-\sqrt{3} - i = 210^\circ$
- Conjugado: $\sqrt{3} - i = 230^\circ$

d) $-\sqrt{3} - i$
- Opuesto: $\sqrt{3} + i = 210^\circ$
- Conjugado: $-\sqrt{3} + i = 230^\circ$

e) -4
- Opuesto: $4 = 0^\circ$
- Conjugado: $-4 = 180^\circ$

f) $2i$
- Opuesto: $-2i = 270^\circ$
- Conjugado: $-2i = 270^\circ$
g) $-\frac{3}{4}i = \left(\frac{3}{4}\right)^{270°}$

Opuesto: $\frac{3}{4}i = \left(\frac{3}{4}\right)^{90°}$

Conjuguado: $\frac{3}{4}i = \left(\frac{3}{4}\right)^{90°}$

h) $2 + 2\sqrt{3}i = \sqrt{14}_{60°}$

Opuesto: $-2 - 2\sqrt{3}i = \sqrt{14}_{120°}$

Conjuguado: $2 - 2\sqrt{3}i = \sqrt{14}_{300°}$

15 Escribe en forma binómica los siguientes números complejos:

a) $2_{45°}$

b) $3_{(\pi/6)}$

c) $\sqrt{2}_{180°}$

d) $1_{0°}$

e) $1_{(\pi/2)}$

f) $5_{270°}$

g) $1_{150°}$

h) $4_{100°}$

a) $2_{45°} = 2(\cos 45° + i \sen 45°) = 2\left(\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2}\right) = \sqrt{2} + \sqrt{2}i$

b) $3_{(\pi/6)} = 3\left(\cos \frac{\pi}{6} + i \sen \frac{\pi}{6}\right) = 3\left(\frac{\sqrt{3}}{2} + i \frac{1}{2}\right) = \frac{3\sqrt{3}}{2} + \frac{3}{2}i$

c) $\sqrt{2}_{180°} = \sqrt{2}(\cos 180° + i \sen 180°) = \sqrt{2}(-1 + i \cdot 0) = -\sqrt{2}$

d) $1_{0°} = 1$

e) $1_{(\pi/2)} = \cos \frac{\pi}{2} + i \sen \frac{\pi}{2} = i$

f) $5_{270°} = -5i$

g) $1_{150°} = \cos 150° + i \sen 150° = -\frac{\sqrt{3}}{2} + i \frac{1}{2} = -\frac{\sqrt{3}}{2} + \frac{1}{2}i$

h) $4_{100°} = 4(\cos 100° + i \sen 100°) = 4(-0,17 + i \cdot 0,98) = -0,69 + 3,94i$
Dados los números complejos:

\[z_1 = 2_{270^\circ}, \quad z_2 = 4_{120^\circ}, \quad z_3 = 3_{315^\circ} \]

calcula:

a) \(z_1 \cdot z_2 \)

b) \(z_2 \cdot z_3 \)

c) \(z_1 \cdot z_3 \)

d) \(\frac{z_3}{z_1} \)

e) \(\frac{z_2}{z_1} \)

f) \(\frac{z_1 \cdot z_3}{z_2} \)

g) \(z_1^2 \)

h) \(z_2^3 \)

i) \(z_3^4 \)

17 Expresa en forma polar y calcula:

a) \((-1 - i)^5 \)

b) \(\sqrt[4]{1 - \sqrt{3}i} \)

c) \(\frac{6\sqrt[6]{64}}{\sqrt[3]{8i}} \)

d) \(\sqrt[3]{8i} \)

e) \((-2\sqrt[2]{3} + 2i)^6 \)

f) \((3 - 4i)^3 \)

a) \((-1 - i)^5 = \left(\sqrt{2}_{225^\circ}\right)^5 = 4 \sqrt{2}_{1125^\circ} = 4 \sqrt{2}_{45^\circ} = 4 \sqrt{2} \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} i\right) = 4 + 4i \)

b) \(\sqrt[4]{1 - \sqrt{3}i} = \sqrt[4]{2_{300^\circ}} = \sqrt[4]{2_{(360^\circ + 360^\circ n)/4}} = \sqrt[4]{2}_{75^\circ + 90^\circ n}; \quad n = 0, 1, 2, 3 \)

Las cuatro raíces son:

\[\sqrt[4]{2}_{75^\circ}, \quad \sqrt[4]{2}_{165^\circ}, \quad \sqrt[4]{2}_{255^\circ}, \quad \sqrt[4]{2}_{345^\circ} \]

c) \(\sqrt[6]{64} = \sqrt[6]{64_{0^\circ}} = \sqrt[6]{2^{6(360^\circ k)/4}} = 2\sqrt{2}_{90^\circ k}; \quad k = 0, 1, 2, 3 \)

Las cuatro raíces son:

\[2\sqrt{2}_{0^\circ} = 2\sqrt{2}, \quad 2\sqrt{2}_{90^\circ} = 2\sqrt{2}i, \quad 2\sqrt{2}_{180^\circ} = -2\sqrt{2}, \quad 2\sqrt{2}_{270^\circ} = -2\sqrt{2}i \]

d) \(\sqrt[3]{8i} = \sqrt[3]{8_{90^\circ}} = 2_{(90^\circ + 360^\circ k)/3} = 2_{30^\circ + 120^\circ k}; \quad k = 0, 1, 2 \)

Las tres raíces son:

\[2_{30^\circ} = \sqrt{3} + i, \quad 2_{150^\circ} = -\sqrt{3} + i, \quad 2_{270^\circ} = -2i \]

e) \((-2\sqrt{3} + 2i)^6 = (4_{150^\circ})^6 = 4_{096_{900^\circ}} = 4_{096_{180^\circ}} = -4_{096} \)

f) \((3 - 4i)^3 = (5_{300^\circ} 52^2)^3 = 125_{920^\circ} 36^\circ = 125_{200^\circ} 36^\circ \)
18 Calcular y representar gráficamente el resultado:

a) \(\left(\frac{1 - i}{\sqrt{3} + i} \right)^3 \)

\[\left(\frac{1 - i}{\sqrt{3} + i} \right)^3 = \left(\frac{\sqrt{2}}{2} \right)^3 = \left(\frac{\sqrt{2}}{4} \right)^3 = \left(\frac{\sqrt{2}}{4} \right)^{855°} = \left(\frac{\sqrt{2}}{4} \right)^{135°} = \]

\[\frac{\sqrt{2}}{4} \left(\cos 135° + i \sen 135° \right) = \]

\[\frac{\sqrt{2}}{4} \left(\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right) = -\frac{1}{4} + \frac{1}{4}i \]

b) \(\frac{3}{\sqrt{2 - i}} \)

\[\frac{3}{\sqrt{2 - i}} = \frac{3}{\sqrt{\left(\frac{1 + i}{2} \right)^2}} = \frac{3}{\sqrt{\frac{1 + 3i}{5}}} = \frac{3}{\sqrt{\frac{1}{5} + \frac{3}{5}i}} = \]

\[\frac{3}{\sqrt{\frac{1}{5}}} \left(\sqrt{71° 34'} + 360°k \right)^3 = \frac{3}{\sqrt{\frac{1}{5}}} \left(23° 51' \right)^3 \]

Las tres raíces son:

\[\sqrt[6]{\frac{2}{5}} = 0,785 + 0,347i \]

\[\sqrt[6]{\frac{2}{5}} = -0,693 + 0,56i \]

\[\sqrt[6]{\frac{2}{5}} = -0,092 - 0,853i \]

19 Calcular y representar las soluciones:

a) \(3\sqrt{1 - 4\sqrt{3}i} \)

b) \(4\sqrt{-16} \)

c) \(\sqrt{8i} \)

a) \(3\sqrt{1 - 4\sqrt{3}i} = 3\sqrt{8_{300°}} = 2(300° + 360°k)/3 = 2_{100° + 120°k} \); \(k = 0, 1, 2 \)

Las tres raíces son:

\[2_{100°} = -0,35 + 1,97i \]

\[2_{220°} = -1,53 - 1,26i \]

\[2_{340°} = 1,88 - 0,68i \]
b) \(\sqrt[4]{16} = \sqrt[4]{16 \cdot 180^\circ} = 2(180^\circ + 360^\circ k)/4 = 2_{45^\circ + 90^\circ k} \); \(k = 0, 1, 2, 3 \)

Las cuatro raíces son:

\[
\begin{align*}
2_{45^\circ} &= \sqrt{2} + \sqrt{2} i \\
2_{135^\circ} &= -\sqrt{2} + \sqrt{2} i \\
2_{225^\circ} &= -\sqrt{2} - \sqrt{2} i \\
2_{315^\circ} &= \sqrt{2} - \sqrt{2} i
\end{align*}
\]

Las tres raíces son:

\[
\begin{align*}
2_{30^\circ} &= \sqrt{3} + i \\
2_{150^\circ} &= -\sqrt{3} + i \\
2_{270^\circ} &= -2 i
\end{align*}
\]

Página 163

20 Calcula pasando a forma polar:

a) \((1 + i \sqrt{3})^5 \)

\[
\begin{align*}
(1 + i \sqrt{3})^5 &= (2)^5 \left(\cos 300^\circ + i \sin 300^\circ \right) \\
&= 32 \left(\frac{1}{2} - \frac{\sqrt{3}}{2} i \right) = 16 - 16 \sqrt{3} i
\end{align*}
\]

b) \((-1 - i \sqrt{3})^6 \left(\sqrt{3} - i \right) \)

\[
\begin{align*}
(-1 - i \sqrt{3})^6 \left(\sqrt{3} - i \right) &= (2_{240^\circ})^6 \left(2_{330^\circ} \right) = (64_{1440^\circ}) \left(2_{330^\circ} \right) \\
&= (64_{0^\circ}) \left(2_{330^\circ} \right) = 128_{330^\circ} = 128 \left(\cos 330^\circ + i \sin 330^\circ \right) \\
&= 128 \left(\frac{\sqrt{3}}{2} + i \frac{-1}{2} \right) = 64 \sqrt{3} - 64 i
\end{align*}
\]

c) \(\sqrt[4]{-2 + 2 \sqrt{3} i} \)

\[
\begin{align*}
\sqrt[4]{-2 + 2 \sqrt{3} i} &= \sqrt[4]{4_{120^\circ}} = \sqrt[4]{4_{(120^\circ + 360^\circ k)/4}} = \sqrt[4]{\sqrt{2}_{30^\circ + 90^\circ k}} \; k = 0, 1, 2, 3
\end{align*}
\]

Las cuatro raíces son:

\[
\begin{align*}
\sqrt{2}_{30^\circ} &= \frac{\sqrt{6}}{2} + \frac{\sqrt{2}}{2} i \\
\sqrt{2}_{120^\circ} &= -\frac{\sqrt{2}}{2} + \frac{\sqrt{6}}{2} i \\
\sqrt{2}_{210^\circ} &= -\frac{\sqrt{6}}{2} - \frac{\sqrt{2}}{2} i \\
\sqrt{2}_{300^\circ} &= \frac{\sqrt{2}}{2} - \frac{\sqrt{6}}{2} i
\end{align*}
\]
d) \[\frac{8}{(1 - i)^5} = \frac{8\angle 0^\circ}{(\sqrt{2 \angle 315^\circ})^5} = \frac{8\angle 0^\circ}{4\sqrt{2 \angle 1575^\circ}} = \frac{8\angle 0^\circ}{4\sqrt{2 \angle 135^\circ}} = \left(\frac{8}{4\sqrt{2}} \right) \angle \left(-135^\circ \right) = \left(\frac{2}{\sqrt{2}} \right) \angle 225^\circ = \sqrt{2} \angle 225^\circ = \sqrt{2} \left(\cos 225^\circ + i \sen 225^\circ \right) = \sqrt{2} \left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} i \right) = -1 - i \]

e) \[\sqrt[6]{-64} = \sqrt[6]{64 \angle 180^\circ} = \sqrt[6]{2^{6} \angle (180^\circ + 360^\circ k)/6} = 2^{\frac{1}{2}} \angle \left(30^\circ + 60^\circ k \right); \ k = 0, 1, 2, 3, 4, 5 \]
Las seis raíces son:
\[2^{\frac{1}{30^\circ}} = \sqrt[3]{3} + i \quad 2^{\frac{1}{90^\circ}} = 2i \quad 2^{\frac{1}{150^\circ}} = -\sqrt{3} + i \]
\[2^{\frac{1}{210^\circ}} = -\sqrt{3} - i \quad 2^{\frac{1}{270^\circ}} = -2 \quad 2^{\frac{1}{330^\circ}} = \sqrt{3} - i \]

f) \[\sqrt{-1 - i} = \sqrt{225^\circ} = \sqrt{2 \angle 225^\circ} = \sqrt{2} \left(\cos 225^\circ + i \sen 225^\circ \right) = \sqrt{2} \left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} i \right) = -1 - i \]
Las dos raíces son:
\[\sqrt{2} \angle 112^\circ 30^\prime = -0,46 + 1,1i \quad \sqrt{2} \angle 292^\circ 30^\prime = 0,46 - 1,1i \]

g) \[\sqrt{-i} = \sqrt{1 \angle 270^\circ} = 1 \left(\cos 270^\circ + 360^\circ k \right)/3 = 1 \left(90^\circ + 120^\circ k \right); \ k = 0, 1, 2 \]
Las tres raíces son:
\[1^{\frac{1}{90^\circ}} = i \quad 1^{\frac{1}{210^\circ}} = -\sqrt{3} - i \quad 1^{\frac{1}{330^\circ}} = \frac{\sqrt{3}}{2} - \frac{1}{2} i \]

h) \[\sqrt{\frac{2 - 2i}{3 + 3i}} = \sqrt{\frac{2\sqrt{2 \angle 315^\circ}}{2 \sqrt{2 \angle 135^\circ}}} = \left(\frac{2}{3} \right)^{\angle 180^\circ} = \left(\frac{2}{3} \right)^{\angle (180^\circ + 360^\circ k)/2} = \left(\frac{\sqrt{2}}{\sqrt{3}} \right)_{90^\circ + 180^\circ k}; \ k = 0, 1 \]
Las dos raíces son:
\[\left(\frac{\sqrt{2}}{\sqrt{3}} \right)_{90^\circ} = \frac{\sqrt{2}}{\sqrt{3}} i \quad \left(\frac{\sqrt{2}}{\sqrt{3}} \right)_{270^\circ} = -\frac{\sqrt{2}}{\sqrt{3}} i \]

21. Expresa en forma polar \(z \), su opuesto \(-z\), y su conjugado \(\bar{z} \) en cada uno de estos casos:

a) \(z = 1 - \sqrt{3} i \)

b) \(z = -2 - 2i \)

c) \(z = -2\sqrt{3} + 2i \)

a) \(z = 1 - \sqrt{3} i = 2^{\frac{1}{300^\circ}}; \ -z = -1 + \sqrt{3} i = 2^{\frac{120^\circ}{120^\circ}}; \ \bar{z} = 1 + \sqrt{3} i = 2^{\frac{60^\circ}{60^\circ}} \)

b) \(z = -2 - 2i = 2\sqrt{2 \angle 225^\circ}; \ -z = 2 + 2i = 2\sqrt{2 \angle 45^\circ}; \ \bar{z} = -2 + 2i = 2\sqrt{2 \angle 135^\circ} \)

c) \(z = -2\sqrt{3} + 2i = 4^{\frac{150^\circ}{150^\circ}}; \ -z = 2\sqrt{3} - 2i = 4^{\frac{330^\circ}{330^\circ}}; \ \bar{z} = -2\sqrt{3} - 2i = 4^{\frac{210^\circ}{210^\circ}} \)
22 Representa los polígonos regulares que tienen por vértices los afijos de las siguientes raíces:

a) \(\sqrt[5]{i} \)

\[\sqrt[5]{i} = \sqrt[5]{e^{\frac{2\pi i}{5}}} = e^{\frac{2\pi i}{5}} \quad k = 0, 1, 2, 3, 4 \]

Las cinco raíces son:

\[118°, 190°, 262°, 334°, 406° \]

Representación del polígono (pentágono):

b) \(\sqrt[6]{-1} \)

\[\sqrt[6]{-1} = \sqrt[6]{e^{\frac{2\pi i}{6}}} = e^{\frac{2\pi i}{6}} \quad k = 0, 1, 2, 3, 4, 5 \]

Las seis raíces son:

\[130°, 190°, 250°, 310°, 370°, 430° \]

Representación del polígono (hexágono):

c) \(\sqrt[4]{2\sqrt{3} + 2i} \)

\[\sqrt[4]{2\sqrt{3} + 2i} = e^{\frac{\pi i}{12}} \quad k = 0, 1, 2, 3 \]

Las cuatro raíces son:

\[\sqrt[4]{2}, \sqrt[4]{2\sqrt{3} + 2i}, \sqrt[4]{2\sqrt{3} + 2i}, \sqrt[4]{2\sqrt{3} + 2i} \]

Representación del polígono (cuadrado):
Ecuaciones y sistemas en \(\mathbb{C} \)

23 Resuelve las siguientes ecuaciones y expresa las soluciones en forma binomial:

\begin{align*}
\text{a)} & \quad z^2 + 4 = 0 & \text{b)} & \quad z^2 + z + 4 = 0 \\
\text{c)} & \quad z^2 + 3z + 7 = 0 & \text{d)} & \quad z^2 - z + 1 = 0
\end{align*}

\begin{align*}
\text{a)} & \quad z^2 + 4 = 0 \quad \Rightarrow \quad z^2 = -4 \quad \Rightarrow \quad z = \pm \sqrt{-4} = \pm 2i \\
& \quad z_1 = -2i, \quad z_2 = 2i \\
\end{align*}

\begin{align*}
\text{b)} & \quad z^2 + z + 4 = 0 \quad \Rightarrow \quad z = \frac{-1 \pm \sqrt{1 - 16}}{2} = \frac{-1 \pm \sqrt{-15}}{2} = \frac{-1 \pm 15i}{2} \\
& \quad z_1 = -\frac{1}{2} - \frac{\sqrt{15}}{2} i, \quad z_2 = -\frac{1}{2} + \frac{\sqrt{15}}{2} i \\
\end{align*}

\begin{align*}
\text{c)} & \quad z^2 + 3z + 7 = 0 \quad \Rightarrow \quad z = \frac{-3 \pm \sqrt{9 - 28}}{2} = \frac{-3 \pm \sqrt{-19}}{2} = \frac{-3 \pm \sqrt{19}i}{2} \\
& \quad z_1 = -\frac{3}{2} - \frac{\sqrt{19}}{2} i, \quad z_2 = -\frac{3}{2} + \frac{\sqrt{19}}{2} i \\
\end{align*}

\begin{align*}
\text{d)} & \quad z^2 - z + 1 = 0 \quad \Rightarrow \quad z = \frac{1 \pm \sqrt{1 - 4}}{2} = \frac{1 \pm \sqrt{3}i}{2} \\
& \quad z_1 = \frac{1}{2} - \frac{1}{2} i, \quad z_2 = \frac{1}{2} + \frac{1}{2} i \\
\end{align*}

24 Resuelve las ecuaciones:

\begin{align*}
\text{a)} & \quad z^5 + 32 = 0 & \text{b)} & \quad iz^3 - 27 = 0 \\
\text{c)} & \quad z^3 + 8i = 0 & \text{d)} & \quad iz^4 + 4 = 0
\end{align*}

\begin{align*}
\text{a)} & \quad z^5 + 32 = 0 \quad \Rightarrow \quad z^5 = -32 \\
& \quad z = \sqrt[5]{-32} = \sqrt[5]{32 \cdot -32} = 2 \cdot 360° + 360° k/5 = 2 \cdot 72° k; \quad k = 0, 1, 2, 3, 4 \\
& \text{Las cinco raíces son:} \\
& \quad 2_{36°}, \quad 2_{108°}, \quad 2_{180°}, \quad 2_{252°}, \quad 2_{324°} \\
\text{b)} & \quad iz^3 - 27 = 0 \quad \Rightarrow \quad z^3 + 27i = 0 \quad \Rightarrow \quad z^3 = -27i \\
& \quad z = \sqrt[3]{-27i} = \sqrt[3]{27 \cdot -27} = 3 \cdot (270° + 360° k/3) = 3 \cdot 90° + 120° k; \quad k = 0, 1, 2 \\
& \text{Las tres raíces son:} \\
& \quad 3_{90°}, \quad 3_{210°}, \quad 3_{330°} \\
\text{c)} & \quad z^3 + 8i = 0 \quad \Rightarrow \quad z = \sqrt[3]{-8i} = \sqrt[3]{8 \cdot -8} = 2 \cdot (270° + 360° k/3) = 2 \cdot 90° + 120° k; \quad k = 0, 1, 2 \\
& \text{Las tres raíces son:} \\
& \quad 2_{90°} = 2i, \quad 2_{210°} = -\sqrt{3} - i, \quad 2_{330°} = \sqrt{3} - i
d) $iz^4 + 4 = 0 \rightarrow z^4 = -4i \rightarrow z^4 = 4i$

Las cuatro raíces son:

\[
\begin{align*}
\sqrt[2]{2} & = 1,3 + 0,5i \\
\sqrt[2]{112} & = -0,5 + 1,3i \\
\sqrt[2]{-13} & = 1,3 - 0,5i \\
\sqrt[2]{292} & = 0,5 - 1,3i
\end{align*}
\]

25 Resuelve las siguientes ecuaciones en \mathbb{C}:

a) $z^2 + 4i = 0$

b) $z^2 - 2z + 5 = 0$

c) $2z^2 + 10 = 0$

d) $z^4 + 13z^2 + 36 = 0$

a) $z^2 + 4i = 0 \rightarrow z^2 = -4i \rightarrow z = \sqrt{-4i} = \sqrt[4]{16} = \sqrt[4]{2^4} = \sqrt[4]{2^4} = 2(270° + 360°k)/4; \ k = 0, 1, 2, 3$

$z_1 = 2_{135°}, \ z_2 = 2_{315°}$

b) $z^2 - 2z + 5 = 0 \rightarrow z = \frac{2 \pm \sqrt{4 - 20}}{2} = \frac{2 \pm \sqrt{-16}}{2} = \frac{2 \pm 4i}{2} = 1 \pm 2i$

$z_1 = 1 - 2i, \ z_2 = 1 + 2i$

c) $2z^2 + 10 = 0 \rightarrow 2z^2 = -10 \rightarrow z^2 = -5 \rightarrow z = \sqrt{-5}$

$z_1 = -\sqrt{5}i, \ z_2 = \sqrt{5}i$

d) $z^4 + 13z^2 + 36 = 0$

$z^2 = t$

$t^2 + 13t + 36 = 0$

$t = \frac{-13 \pm \sqrt{169 - 144}}{2} = \frac{-13 \pm 5}{2}$

$\begin{align*}
& \text{t = -4} \\
& \text{t = -9}
\end{align*}$

$z^2 = -4 \rightarrow z = \pm 2i$

$z^2 = -9 \rightarrow z = \pm 3i$

Las soluciones son: $2i = 2_{90°}; -2i = 2_{270°}; 3i = 3_{90°}; -3i = 3_{270°}$

26 Obtén las cuatro soluciones de las siguientes ecuaciones:

a) $z^4 - 1 = 0$

b) $z^4 + 16 = 0$

c) $z^4 - 8z = 0$

a) $z^4 - 1 = 0 \rightarrow z^4 = 1 \rightarrow z = \sqrt[4]{1} = \sqrt[4]{1_{0°}} = 1_{360°k/4} = 1_{90°k}; \ k = 0, 1, 2, 3$

Las cuatro raíces son:

$1_{0°} = 1 \quad 1_{90°} = i \quad 1_{180°} = -1 \quad 1_{270°} = -i$

b) $z^4 + 16 = 0 \rightarrow z^4 = -16 \rightarrow z = \sqrt{-16} = \sqrt[4]{16_{180°}} = 2_{(180° + 360°k)/4} = 2_{45° + 90°k}; \ k = 0, 1, 2, 3$
Las cuatro raíces son:

\[z_1 = \sqrt{2} + \sqrt{2} i \]
\[z_2 = -\sqrt{2} - \sqrt{2} i \]
\[z_3 = \sqrt{2} + \sqrt{2} i \]
\[z_4 = -\sqrt{2} - \sqrt{2} i \]

c) \(z^4 - 8z = 0 \) \(\rightarrow \) \(z (z^3 - 8) = 0 \) \(\frac{z}{z} = 0 \) \(\frac{z}{z} = \sqrt[4]{8} \)

Las soluciones de la ecuación son:

\[0, 20°, 2120°, -1 + i, -1 - i \]

27 Halla los números complejos \(z \) y \(w \) que verifican cada uno de estos sistemas de ecuaciones:

a) \(\begin{cases} z + w = -1 + 2i \\ z - w = -3 + 4i \end{cases} \)

Sumando miembro a miembro:

\[2z = -4 + 6i \] \(\rightarrow \) \(z = -2 + 3i \)
\[w = (-1 + 2i) - (-2 + 3i) = 1 - i \]

Solución: \(z = -2 + 3i; \) \(w = 1 - i \)

b) \(\begin{cases} z + 2w = 2 + i \\ iz + w = 5 + 5i \end{cases} \)

Multiplicamos por \(-2\) la 2.ª ecuación y sumamos:

\[(1 - 2i)z = -8 - 9i \] \(\rightarrow \) \(z = \frac{-8 - 9i}{1 - 2i} = 2 - 5i \)
\[w = \frac{2 + i - (2 - 5i)}{2} = 3i \]

Solución: \(z = 2 - 5i; \) \(w = 3i \)

PARA RESOLVER

28 Calcula \(m \) para que el número complejo \(3 - mi \) tenga el mismo módulo que \(2 \sqrt{5} + \sqrt{5} i \).

\[|3 - mi| = \sqrt{9 + m^2} \]
\[\sqrt{9 + m^2} = 5 \] \(\rightarrow \) \(9 + m^2 = 25 \) \(\rightarrow \) \(m^2 = 16 \)

Hay dos posibilidades: \(m = -4 \) y \(m = 4 \)
29 Halla dos números complejos tales que su cociente sea 3, la suma de sus argumentos π/3, y la suma de sus módulos 8.

Llámalos \(r_\alpha \) y \(s_\beta \) y escribe las ecuaciones que los relacionan:

\[
\frac{r_\alpha}{s_\beta} = 30^\circ \quad (0^\circ \text{ es el argumento del cociente}, \ \alpha - \beta = 0^\circ); \quad r + s = 8 \quad y \quad \alpha + \beta = \frac{\pi}{3}.
\]

\[
\frac{r}{s} = 3 \\
\alpha + \beta = \frac{\pi}{3} \\
\alpha - \beta = 0^\circ
\]

Hallamos sus módulos:

\[
\frac{r}{s} = 3 \\
r + s = 8
\]

\[
r = 3s \\
3s + s = 8; \quad 4s = 8; \quad s = 2; \quad r = 6
\]

Hallamos sus argumentos:

\[
\alpha + \beta = \frac{\pi}{3} \begin{cases}
\alpha = \beta; \quad 2\beta = \frac{\pi}{3}; \quad \beta = \frac{\pi}{6}; \quad \alpha = \frac{\pi}{6}
\end{cases}
\]

Los números serán: \(6\pi/6 \) y \(2\pi/6 \)

30 El producto de dos números complejos es \(290^\circ \) y el cubo del primero dividido por el otro es \((1/2)_{0^\circ}\). Hállalos.

Llamamos a los números: \(z = r_\alpha \) y \(w = s_\beta \)

\[
r_\alpha \cdot s_\beta = 2_{90^\circ} \quad \begin{cases}
r \cdot s = 2 \\
\alpha + \beta = 90^\circ
\end{cases}
\]

\[
\frac{(r_\alpha)^3}{s_\beta} = \left(\frac{1}{2}\right)_{0^\circ} \quad \begin{cases}
r^3/s = \frac{1}{2} \\
3\alpha - \beta = 90^\circ
\end{cases}
\]

\[
r \cdot s = 2 \\
\frac{r^3}{s} = \frac{1}{2} \begin{cases}
r \cdot 2r^3 = 2 \rightarrow r^4 = 1 \rightarrow r = 1 \rightarrow s = 2 \cdot 1^3 = 2 \\
-1 \quad \text{(no vale)}
\end{cases}
\]

\[
\alpha + \beta = 90^\circ \quad \begin{cases}
3\alpha - \beta = 0^\circ
\end{cases}
\]

\[\rightarrow \quad 4\alpha = 90^\circ + 360^\circ k \rightarrow \]

\[\rightarrow \quad \alpha = \frac{90^\circ + 360^\circ k}{4}, \quad k = 0, 1, 2, 3\]

\[\beta = 90^\circ - \alpha\]
Hay cuatro soluciones:

\[z_1 = 122° 30' \quad \Rightarrow \quad w_1 = 2z_1^3 = 2 \cdot 167° 30' = 267° 30' \]

\[z_2 = 112° 30' \quad \Rightarrow \quad w_2 = 2337° 30' \]

\[z_3 = 1202° 30' \quad \Rightarrow \quad w_3 = 2607° 30' = 2247° 30' \]

\[z_4 = 1292° 30' \quad \Rightarrow \quad w_4 = 2877° 30' = 2157° 30' \]

31 El producto de dos números complejos es \(-8\) y el primero es igual al cuadrado del segundo. Calcúalos.

\[
\begin{align*}
z \cdot w &= -8 \\
\frac{z}{w} &= \frac{w^3}{8} = -8 \\
w &= \sqrt[3]{-8} = \sqrt[3]{8\cdot 180°} = 2(180° + 360° k)/3 = 260° + 120° k; \quad k = 0, 1, 2
\end{align*}
\]

Hay tres soluciones:

\[w_1 = 260° \quad \Rightarrow \quad z_1 = 4120° \]

\[w_2 = 2180° \quad \Rightarrow \quad z_2 = 40° = 4 \]

\[w_3 = 2300° \quad \Rightarrow \quad z_3 = 4600° = 4240° \]

32 De dos números complejos sabemos que:

- Tienen el mismo módulo, igual a 2.
- Sus argumentos suman \(17\pi/6\).
- El primero es opuesto del segundo.

¿Cuáles son esos números?

Llamamos a los números: \(z = r_α \quad y \quad w = s_β \)

Tenemos que:

\[
\begin{align*}
r = s &= 2 \\
α + β &= \frac{17\pi}{6}
\end{align*}
\]

\[
2α = \frac{17\pi}{6} + \pi \rightarrow \alpha = \frac{23}{12} \pi \rightarrow β = \frac{23}{12} π - π = \frac{11}{12} π
\]

Por tanto, los números son: \(1\frac{23π}{12} \quad y \quad 2\frac{11π}{12} \); o bien \(1\frac{11π}{12} \quad y \quad 2\frac{23π}{12} \)

33 Calcula \(\cos 75° \) y \(\sin 75° \) mediante el producto \(1_30° \cdot 1_45° \).

\[1_30° \cdot 1_45° = 1_75° = \cos 75° + i \sin 75° \]

\[1_30° \cdot 1_45° = (\cos 30° + i \sin 30°) (\cos 45° + i \sin 45°) = \left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) = \]

\[
\frac{\sqrt{6}}{4} + \frac{\sqrt{6}}{4}i + \frac{\sqrt{2}}{4}i - \frac{\sqrt{2}}{4}i = \frac{\sqrt{6} - \sqrt{2}}{4} + \frac{\sqrt{6} + \sqrt{2}}{4}i
\]

Por tanto:

\[\cos 75° = \frac{\sqrt{6} - \sqrt{2}}{4} \quad \text{sen} 75° = \frac{\sqrt{6} + \sqrt{2}}{4} \]
34 Halla las razones trigonométricas de 15° conociendo las de 45° y las de 30° mediante el cociente $\frac{145°}{130°}$.

$$145° : 130° = \frac{\cos 15° + i \sin 15°}{\cos 30° + i \sin 30°} = \frac{\sqrt{2}/2 + i(\sqrt{2}/2)}{\sqrt{3}/2 + i(1/2)} = \frac{\sqrt{2} + i\sqrt{2}}{\sqrt{3} + i} = \frac{(\sqrt{2} + i\sqrt{2})(\sqrt{3} - i)}{(\sqrt{3} + i)(\sqrt{3} - i)} = \frac{\sqrt{6} - \sqrt{2}i + \sqrt{6}i + \sqrt{2}}{3 + 1} = \frac{\sqrt{6} + \sqrt{2}}{4} + \frac{\sqrt{6} + \sqrt{2}}{4}i$$

Por tanto:

$$\cos 15° = \frac{\sqrt{6} + \sqrt{2}}{4} \quad \quad \sin 15° = \frac{\sqrt{6} - \sqrt{2}}{4}$$

35 ¿Para qué valores de x es imaginario puro el cociente $\frac{x - 4i}{x + i}$?

$$\frac{x - 4i}{x + i} = \frac{(x - 4i)(x - i)}{(x + i)(x - i)} = \frac{x^2 - 4}{x^2 + 1} + \frac{-5x}{x^2 + 1}i$$

Para que sea imaginario puro, ha de ser:

$$\frac{x^2 - 4}{x^2 + 1} = 0 \rightarrow x^2 - 4 = 0 \quad \quad x = 2 \quad \quad x = -2$$

36 Halla, en función de x, el módulo de $z = \frac{1 + xi}{1 - xi}$.

Demuestra que $|z| = 1$ para cualquier valor de x.

$$|z| = \left| \frac{1 + xi}{1 - xi} \right| = \sqrt{\frac{1 + x^2}{1 + x^2}} = 1$$

O bien:

$$z = \frac{1 + xi}{1 - xi} = \frac{(1 + xi)(1 + xi)}{(1 - xi)(1 + xi)} = \frac{1 - x^2 + 2xi}{1 + x^2} = \frac{1 - x^2}{1 + x^2} + \frac{2x}{1 + x^2}i$$

$$|z| = \sqrt{\frac{(1 - x^2)^2 + (2x)^2}{(1 + x^2)^2}} = \sqrt{\frac{1 + x^4 - 2x^2 + 4x^2}{(1 + x^2)^2}} = \sqrt{\frac{x^4 + 2x^2 + 1}{(1 + x^2)^2}} = \sqrt{\frac{(1 + x^2)^2}{(1 + x^2)^2}} = 1$$

37 Calcula x para que el número complejo que obtenemos al dividir $\frac{x + 2i}{4 - 3i}$ esté representado en la bisectriz del primer cuadrante.

Para que $a + bi$ esté en la bisectriz del primer cuadrante, debe ser $a = b$.

$$\frac{x + 2i}{4 - 3i} = \frac{(x + 2i)(4 + 3i)}{(4 - 3i)(4 + 3i)} = \frac{4x + 3xi + 8i - 6}{16 + 9} = \frac{4x - 6}{25} + \frac{3x + 8}{25}i$$
Página 164

38 Halla dos números complejos conjugados cuya suma es 8 y la suma de sus módulos es 10.

\[
\begin{align*}
\frac{4x - 6}{25} &= \frac{3x + 8}{25} \quad \Rightarrow \quad 4x - 6 = 3x + 8 \quad \Rightarrow \quad x = 14
\end{align*}
\]

\[
\begin{align*}
z + \bar{z} &= 8 \\
|z| + |ar{z}| &= 10 \\
\text{Como} \quad |z| = |ar{z}| \quad \Rightarrow \quad |z| = 5
\end{align*}
\]

Si llamamos:

\[
z = a + bi \quad \Rightarrow \quad \bar{z} = a - bi
\]

\[
z + \bar{z} = a + bi + a - bi = 2a = 8 \quad \Rightarrow \quad a = 4
\]

\[
|z| = |ar{z}| = \sqrt{a^2 + b^2} = \sqrt{16 + b^2} = 5 \quad \Rightarrow \quad 16 + b^2 = 25 \quad \Rightarrow \quad b^2 = 9 \quad \Rightarrow \quad b = \pm \sqrt{9} = \pm 3
\]

Hay dos soluciones:

\[
z_1 = 4 + 3i \quad \Rightarrow \quad \bar{z}_1 = 4 - 3i
\]

\[
z_2 = 4 - 3i \quad \Rightarrow \quad \bar{z}_2 = 4 + 3i
\]

39 La suma de dos números complejos es 3 + i. La parte real del primero es 2, y el producto de ambos es un número real. Hálalos.

Llamamos \(z = a + bi\) y \(w = c + di\)

Tenemos que:

\[
\begin{align*}
z + w &= 3 + i \\
a + c &= 3 \\
a = 2 &\quad \Rightarrow \quad c = 1 \\
b + d &= 1
\end{align*}
\]

\[
z \cdot w = (2 + bi) (1 + di) = 2 + 2di + bi + bdi^2 = (2 - bd) + (2d + b)i
\]

Para que \(z \cdot w\) sea un número real, ha de ser \(2d + b = 0\).

Por tanto, \(b + d = 1\) \(\Rightarrow \quad d = -1\) y \(b + 2d = 0\) \(\Rightarrow \quad b = 2\)

Los números son: \(z = 2 + 2i; \quad w = 1 - i\)

40 Representa gráficamente los resultados que obtengas al hallar \(\sqrt[3]{-2 - 2i}\) y calcula el lado del triángulo que se forma al unir esos tres puntos.

\[
\sqrt[3]{-2 - 2i} = \sqrt[3]{8 \cdot 225^\circ} = \sqrt[3]{2} \cdot \sqrt[3]{(225^\circ + 360^\circ k)/3} = \sqrt[3]{2} \cdot 75^\circ + 120^\circ k
\]

Las tres raíces son:

\[
z_1 = \sqrt[3]{2} \cdot 75^\circ \quad z_2 = \sqrt[3]{2} \cdot 195^\circ \quad z_3 = \sqrt[3]{2} \cdot 315^\circ
\]
Para hallar la longitud del lado, aplicamos el teorema del coseno:

\[l^2 = (\sqrt{2})^2 + (\sqrt{2})^2 - 2 \cdot \sqrt{2} \cdot \sqrt{2} \cdot \cos 120^\circ = 2 + 2 - 4 \left(-\frac{1}{2} \right) = 4 + 2 = 6 \]

\[l = \sqrt{6} \]

41 Los afijos de las raíces cúbicas de 8i son los vértices de un triángulo equilátero. Compruébalo.

¿Determinan el mismo triángulo los afijos de \(\sqrt[3]{-8i} \), \(\sqrt[3]{8} \) o \(\sqrt[3]{-8} \)? Representa gráficamente esos cuatro triángulos que has obtenido.

• \(\sqrt[3]{8i} \) = \(\sqrt[3]{8}_{270^\circ} \) = \(2(270^\circ + 360^\circ k)/3 \) = \(2_{90^\circ + 120^\circ} \) \(k \); \(k \) = 0, 1, 2

Las tres raíces son:

\[z_1 = 2_{30^\circ} \quad z_2 = 2_{150^\circ} \quad z_3 = 2_{270^\circ} \]

Al tener el mismo módulo y formar entre ellos un ángulo de 120°, el triángulo que determinan es equilátero.

• \(\sqrt[3]{-8i} \) = \(\sqrt[3]{-8}_{270^\circ} \) = \(2(270^\circ + 360^\circ k)/3 \) = \(2_{90^\circ + 120^\circ} \) \(k \); \(k \) = 0, 1, 2

Las tres raíces son:

\[z_1 = 2_{90^\circ} \quad z_2 = 2_{150^\circ} \quad z_3 = 2_{270^\circ} \]

• \(\sqrt[3]{8} \) = \(\sqrt[3]{8}_{0^\circ} \) = \(2_{360^\circ k}/3 \) = \(2_{120^\circ} \) \(k \); \(k \) = 0, 1, 2

Las tres raíces son:

\[z_1 = 2_{0^\circ} \quad z_2 = 2_{120^\circ} \quad z_3 = 2_{240^\circ} \]

• \(\sqrt[3]{-8} \) = \(\sqrt[3]{-8}_{180^\circ} \) = \(2(180^\circ + 360^\circ k)/3 \) = \(2_{60^\circ + 120^\circ} \) \(k \); \(k \) = 0, 1, 2

Las tres raíces son:

\[z_1 = 2_{60^\circ} \quad z_2 = 2_{180^\circ} \quad z_3 = 2_{300^\circ} \]
42 ¿Pueden ser \(z_1 = 2 + i \), \(z_2 = -2 + i \), \(z_3 = -1 - 2i \) y \(z_4 = 1 - 2i \), las raíces de un número complejo? Justifica tu respuesta.

No. Si fueran las cuatro raíces cuartas de un número complejo, formarían entre cada dos de ellas un ángulo de 90°; y ni siquiera forman el mismo ángulo, como vemos en la representación gráfica:

43 Halla los números complejos que corresponden a los vértices de estos hexágonos:

- 1.\(^{\circ}\) hexágono:
 \[
 z_1 = 20^\circ = 2 \\
 z_2 = 260^\circ = 1 + \sqrt{3}i \\
 z_3 = 2120^\circ = -1 + \sqrt{3}i \\
 z_4 = 2180^\circ = -2 \\
 z_5 = 2240^\circ = -1 - \sqrt{3}i \\
 z_6 = 2300^\circ = 1 - \sqrt{3}i
 \]

- 2.\(^{\circ}\) hexágono:
 \[
 z_1 = 230^\circ = \sqrt{3} + i \\
 z_2 = 290^\circ = -2i \\
 z_3 = 2150^\circ = -\sqrt{3} + i \\
 z_4 = 2210^\circ = -\sqrt{3} - i \\
 z_5 = 2270^\circ = 2i \\
 z_6 = 2330^\circ = \sqrt{3} - i
 \]
¿Pueden ser las raíces de un número complejo, \(z \), los números \(2^{28°}, 2^{100°}, 2^{172°}, 2^{244°} \) y \(2^{316°} \)? En caso afirmativo, halla \(z \).

Comprueba si el ángulo que forman cada dos de ellas es el de un pentágono regular.

\[
28° + 72° = 100° \\
100° + 72° = 172° \\
172° + 72° = 244° \\
244° + 72° = 316°
\]

Sí son las raíces quintas de un número complejo. Lo hallamos elevando a la quinta cualquiera de ellas:

\[z = (2^{28°})^5 = 3^{2140°} \]

El número complejo \(3^{40°} \) es vértice de un pentágono regular. Halla los otros vértices y el número complejo cuyas raíces quintas son esos vértices.

Para obtener los otros vértices puedes multiplicar cada uno por \(1^{72°} \).

Los otros vértices serán:

\[3^{112°}, 3^{184°}, 3^{256°}, 3^{328°} \]

El número será:

\[z = (3^{40°})^5 = 2^{43} \]

Una de las raíces cúbicas de un número complejo \(z \) es \(1 + i \). Halla \(z \) y las otras raíces cúbicas.

Ten en cuenta que si \(\sqrt[3]{z} = 1 + i \), \(z = (1 + i)^3 \).

\[1 + i = \sqrt[3]{2^{45°}} \]

Las otras raíces cúbicas son:

\[\sqrt[3]{2^{45°} + 120°} = \sqrt[3]{2^{165°}}, \quad \sqrt[3]{2^{165°} + 120°} = \sqrt[3]{2^{285°}} \]

Hallamos \(z \):

\[z = (1 + i)^3 = \left(\sqrt[3]{2^{45°}} \right)^3 = \sqrt[3]{8} \cos 135° + i \sin 135° = \]

\[\sqrt[3]{2} \left(\frac{-\sqrt[3]{2}}{2} + i \frac{\sqrt[3]{2}}{2} \right) = -2 + 2i \]

Escribe una ecuación de segundo grado que tenga por soluciones \(1 + i \) y \(1 - i \).

Mira el ejercicio resuelto 1 de la página 151.

\[
[x - (1 + i)] [x - (1 - i)] = x^2 - (1 - i)x - (1 + i)x + (1 + i)(1 - i) = \\
= x^2 - (1 - i + 1 + i)x + (1 - i^2) = \\
= x^2 - 2x + 2 = 0
\]
48 Escribe una ecuación de segundo grado cuyas soluciones sean:

a) \(5i \) y \(-5i\)
b) \(2 - 3i \) y \(2 + 3i\)

a) \((x - 5i)(x + 5i) = 0\)
\[x^2 - 25i^2 = 0\]
\[x^2 + 25 = 0\]

b) \([x - (2 - 3i)][x - (2 + 3i)] = [(x - 2) + 3i][(x - 2) - 3i] =\]
\[(x - 2)^2 - (3i)^2 = x^2 - 4x + 4 - 9i^2 =\]
\[x^2 - 4x + 13 = 0\]

49 Resuelve los siguientes sistemas de ecuaciones:

a) \[
\begin{align*}
z + w &= -1 + 2i \\
iz + (1 - i)w &= 1 + 3i
\end{align*}
\]

b) \[
\begin{align*}
z - w &= 5 - 3i \\
(2 + i)z + iw &= 3 - 3i
\end{align*}
\]

a) Multiplicamos por \(-i\) la primera ecuación:
\[-iz - iw = i + 2\]
\[iz + (1 - i)w = 1 + 3i\]
Sumamos miembro a miembro:
\[-iw + (1 - i)w = i + 2 + 1 + 3i \rightarrow (1 - 2i)w = 3 + 4i\]
\[w = \frac{3 + 4i}{1 - 2i} = \frac{(3 + 4i)(1 + 2i)}{1^2 - 2i^2} = \frac{3 + 2 + 8i - 8i}{5} = \frac{-1 + 2i}{5}\]
\[z = -1 + 2i - w = -1 + 2i + 1 - 2i = 0\]
Solución: \(z = 0\); \(w = -1 + 2i\)

b) Multiplicamos por \(i\) la primera ecuación:
\[zi - iw = 5i + 3\]
\[(2 + i)z + wi = 3 - 3i\]
Sumamos miembro a miembro:
\[zi + (2 + i)z = 5i + 3 + 3 - 3i \rightarrow (2 + 2i)z = 6 + 2i\]
\[z = \frac{6 + 2i}{2 + 2i} = \frac{(6 + 2i)(2 - 2i)}{4 - 4i^2} = \frac{12 - 8i + 8i}{8} = 2 - i\]
\[w = z - 5 + 3i = 2 - i - 5 + 3i = -3 + 2i\]
Solución: \(z = 2 - i\); \(w = -3 + 2i\)

50 Interpretación gráfica de igualdades y desigualdades entre complejos

Resuelve los siguientes sistemas de ecuaciones:

a) \(Re \ z = 2\)
b) \(Im \ z = 1\)
c) \(Re \ z \leq 0\)
d) \(-1 \leq Im \ z \leq 3\)
e) \(-2 < Re \ z < 5\)
f) \(|z| \leq 3\)
g) \(Arg \ z = 45^\circ\)
h) \(0^\circ \leq Arg \ z \leq 90^\circ\)
Representa los números complejos \(z \) tales que \(z + \overline{z} = -3 \).

Escribe \(z \) en forma binómica, súmale su conjugado y representa la condición que obtienes.

Llamamos \(z = x + iy \)

Entonces: \(\overline{z} = x - iy \)

Así:

\[
z + \overline{z} = x + iy + x - iy = 2x = -3 \quad \rightarrow \quad x = -\frac{3}{2}
\]
Representación:

\[
\begin{array}{c}
\text{Re} \\
-2 & -1 & 1 \\
\end{array}
\]

\[x = -\frac{3}{2}\]

52 Representa los números complejos que verifican:

a) \(\overline{z} = -z\)

\[a) \quad z = x + iy \quad \rightarrow \quad \overline{z} = x - iy\]

\[\overline{z} = -z \quad \rightarrow \quad x - iy = -x - iy \quad \rightarrow \quad 2x = 0 \quad \rightarrow \quad x = 0\] (es el eje imaginario)

Representación:

\[
\begin{array}{c}
\text{Re} \\
-1 & 1 \\
\end{array}
\]

\[x = 0\]

b) \(z + \overline{z} = x + iy + x - iy = 2x\)

\[\mid z + \overline{z} \mid = \mid 2x \mid = 3 \quad \quad 2x = 3 \quad \rightarrow \quad x = \frac{3}{2}\]

\[2x = -3 \quad \rightarrow \quad x = -\frac{3}{2}\]

Representación:

\[
\begin{array}{c}
\text{Re} \\
-2 & -1 & 1 & 2 \\
\end{array}
\]

\[x = -\frac{3}{2} \quad \quad \quad x = \frac{3}{2}\]

c) \(z - \overline{z} = x + iy - z + iy = 2yi\)

\[\mid z - \overline{z} \mid = \mid 2yi \mid = \mid 2y \mid = 4 \quad \quad 2y = 4 \quad \rightarrow \quad y = 2\]

\[2y = -4 \quad \rightarrow \quad y = -2\]

Representación:

\[
\begin{array}{c}
\text{Im} \\
-2 & 2 \\
\end{array}
\]
Escribe las condiciones que deben cumplir los números complejos cuya representación gráfica es la siguiente:

a) $\Re z = -3$

b) $\Im z = 2$

c) $-1 \leq \Re z \leq 1$

d) $0 \leq \Im z < 2$

e) $\begin{cases} -3 < \Re z < 2 \\ -2 < \Im z < 3 \end{cases}$

f) $|z| = 3$

En a), b) y f) es una igualdad. En c) y d), una desigualdad. En e), dos desigualdades.

¿Se puede decir que un número complejo es real si su argumento es 0?

No, también son reales los números con argumento 180° (los negativos).

Si $z = r_\alpha$, ¿qué relación tienen con z los números $r_\alpha + 180^\circ$ y $r_\frac{360^\circ}{\beta} - \alpha$?

$r_\alpha + 180^\circ = -z$ (opuesto de z)

$r_\frac{360^\circ}{\beta} - \alpha = \bar{z}$ (conjugado de z)

Comprueba que:

a) $\bar{z} + w = \bar{z} + \bar{w}$

b) $\bar{z} \cdot w = \bar{z} \cdot \bar{w}$

c) $k\bar{z} = k \bar{z}$, con $k \in \mathbb{R}$

$z = a + bi = r_\alpha \rightarrow \bar{z} = a - bi = r_\frac{360^\circ}{\beta} - \alpha$

$w = c + di = r_\beta \rightarrow \bar{w} = c - di = r_\frac{360^\circ}{\beta} - \beta$

a) $z + w = (a + c) + (b + d)i \rightarrow \bar{z} + \bar{w} = (a + c) - (b + d)i$

$\bar{z} + \bar{w} = a - bi + c - di = (a + c) - (b + d)i = \bar{z} + \bar{w}$

Unidad 6. Números complejos
b) \(x \cdot w = (r \cdot r')_{\alpha + \beta} \rightarrow \overline{z} \cdot \overline{w} = (r \cdot r')_{360^\circ - (\alpha + \beta)} \)
\[
\overline{z} \cdot \overline{w} = (r \cdot r')_{360^\circ - \alpha + 360^\circ - \beta} = (r \cdot r')_{360^\circ - (\alpha + \beta)} = \overline{z} \cdot \overline{w}
\]

c) \(kz = ka + kbi \rightarrow \overline{kz} = ka - kbi \)
\[
k \overline{z} = ka - kbi = \overline{kz}
\]

57 Demuestra que:

\[
\left| \frac{1}{z} \right| = \frac{1}{|z|}
\]

\[
\frac{1}{z} = \frac{1}{r_{\alpha}} = \left(\frac{1}{r} \right)_{-\alpha} = \left(\frac{1}{r} \right)_{360^\circ - \alpha} \rightarrow \left| \frac{1}{z} \right| = \frac{1}{r} = \frac{1}{|z|}
\]

58 El producto de dos números complejos imaginarios, ¿puede ser real?

Acláralo con un ejemplo.

Sí. Por ejemplo:

\(z = i, \ w = i \)
\[
z \cdot w = i \cdot i = i^2 = -1 \in \mathbb{R}
\]

59 Representa el número complejo \(z = 4 - 3i \). Multipícalo por \(i \) y comprueba que el resultado que obtienes es el mismo que si aplicas a \(z \) un giro de \(90^\circ \).

\(iz = 4i - 3i^2 = 3 + 4i \)

60 ¿Qué relación existe entre el argumento de un complejo y el de su opuesto?

Se diferencian en \(180^\circ \). Si el argumento del número es \(\alpha \), el de su opuesto es:

\(180^\circ + \alpha \)
¿Qué condición debe cumplir un número complejo \(z = a + bi \) para que \(\bar{z} = \frac{1}{z} \)?

Halla \(\frac{1}{z} \), e iguala a \(a - bi \).

\[
\frac{1}{z} = \frac{1}{a + bi} = \frac{a - bi}{(a + bi)(a - bi)} = \frac{a - bi}{a^2 + b^2} = a - bi
\]

\[
\frac{a}{a^2 + b^2} = a \quad \frac{a}{a^2 + b^2} = b \quad \begin{cases}
 \frac{a}{a^2 + b^2} = a \\
 \frac{-b}{a^2 + b^2} = -b
\end{cases}
\]

Ha de tener módulo 1.

PARA PROFUNDIZAR

Un pentágono regular con centro en el origen de coordenadas tiene uno de sus vértices en el punto \(\left(\sqrt{2}, \sqrt{2} \right) \). Halla los otros vértices y la longitud de su lado.

El punto \(\left(\sqrt{2}, \sqrt{2} \right) \) corresponde al afijo del número complejo \(z = \sqrt{2} + \sqrt{2}i = 245^\circ \).

Para hallar los otros vértices, multiplicamos \(z \) por \(172^\circ \):

\[
\begin{align*}
 z_2 &= 2_{172^\circ} = -0,91 + 1,78i \\
 z_3 &= 2_{117^\circ} = -1,97 - 0,31i \\
 z_4 &= 2_{261^\circ} = -0,31 - 1,97i \\
 z_5 &= 2_{333^\circ} = 1,78 - 0,91i
\end{align*}
\]

Los otros tres vértices serán:

\((-0,91; 1,78)\) \((-1,97; -0,31)\) \((-0,31; -1,97)\) \((1,78; -0,91)\)

Hallamos la longitud del lado aplicando el teorema del coseno:

\[
l^2 = 2^2 + 2^2 - 2 \cdot 2 \cdot \cos 72^\circ
\]

\[
l^2 = 4 + 4 - 4 \cdot 0,31
\]

\[
l^2 = 8 - 1,24
\]

\[
l^2 = 6,76
\]

\(l = 2,6 \) unidades
Si el producto de dos números complejos es -8 y dividiendo el cubo de uno de ellos entre el otro obtenemos de resultado 2, ¿cuánto valen el módulo y el argumento de cada uno?

$$z = r_\alpha$$
$$w = r_\beta'$$
$-8 = 8 \cdot 180^\circ$
$2 = 2 \cdot 0^\circ$

$$r_\alpha \cdot r_\beta' = (r \cdot r')_\alpha + \beta = 8 \cdot 180^\circ \
\therefore \begin{cases}
 r \cdot r' = 8 \\
 \alpha + \beta = 180^\circ
\end{cases}$$

$$\frac{(r_\alpha)^3}{r_\beta'} = \frac{r^3}{r'} = (r^3)_{3\alpha - \beta} = 2 \cdot 0^\circ \
\therefore \begin{cases}
 r^3 = 2 \\
 3\alpha - \beta = 0^\circ
\end{cases}$$

Así:

$$r \cdot r' = 8 \begin{cases}
 r' = \frac{8}{r} \\
 r^3 = 2r' \\
 r' = \frac{r^3}{2}
\end{cases} \Rightarrow \begin{cases}
 r = 2 \\
 r' = 4
\end{cases}$$

$$\alpha + \beta = 180^\circ \begin{cases}
 \alpha + 3\alpha = 180^\circ \\
 4\alpha = 180^\circ
\end{cases} \Rightarrow \begin{cases}
 \alpha = 45^\circ \\
 \beta = 135^\circ
\end{cases}$$

Por tanto: $z = 2_{45^\circ}$, $w = 4_{135^\circ}$

Calcula el inverso de los números complejos siguientes y representa gráficamente el resultado que obtengas:

a) $3_{\pi/3}$

¿Qué relación existe entre el módulo y el argumento de un número complejo y de su inverso?

$$\frac{1}{3_{\pi/3}} = \frac{1}{3_{\pi/3}} = \left(\frac{1}{3}\right)_{-\pi/3} = \left(\frac{1}{3}\right)_{5\pi/3}$$

b) $\frac{1}{2i} = -\frac{i}{2} = \frac{-1}{2} \cdot i = \left(\frac{1}{2}\right)_{270^\circ}$
65 Representa gráficamente las igualdades siguientes. ¿Qué figura se determina en cada caso?

a) $|z - (1 + i)| = 5$

b) $|z - (5 + 2i)| = 3$

a) Circunferencia con centro en $(1, 1)$ y radio 5.

b) Circunferencia de centro en $(5, 2)$ y radio 3.

66 Escribe la condición que verifican todos los números complejos cuyos afijos estén en la circunferencia de centro $(1, 1)$ y radio 3.

$|z - (1 + i)| = 3$
AUTOEVALUACIÓN

1. Efectúa.
\[
\frac{(3 - 2i)^2 - (1 + i)(2 - i)}{-3 + i}
\]

\[
\frac{(3 - 2i)^2 - (1 + i)(2 - i)}{-3 + i} = \frac{9 + 4i^2 - 12i - (2 - i + 2i - i^2)}{-3 + i} = \frac{5 - 12i - 3 - i}{-3 + i} = \frac{(2 - 13i)(-3 - i)}{(-3 + i)(-3 - i)} = \frac{-6 + 13i^2 - 2i + 39i}{9 - i^2} = \frac{-19 + 37i}{10} = -\frac{19}{10} + \frac{37}{10}i
\]

2. Calcula z y expresa los resultados en forma binómica.

\[
\sqrt[4]{z} = \frac{-\sqrt{3} + i}{\sqrt{2}i}
\]

\[
z = \left(\frac{-\sqrt{3} + i}{\sqrt{2}i} \right)^4
\]

Pasamos numerador y denominador a forma polar:

\[
r = \sqrt{(-\sqrt{3})^2 + 1^2} = 2
\]

\[
\tan \alpha = -\frac{1}{\sqrt{3}} \Rightarrow \alpha = 150^\circ
\]

\[
\sqrt{2}i \rightarrow \sqrt{2}e^{90^\circ}i
\]

\[
z = \left(\frac{2e^{150^\circ}}{\sqrt{2}e^{90^\circ}} \right)^4 = (\sqrt{2}e^{60^\circ})^4 = 4e^{240^\circ} \Rightarrow z = 4 (\cos 240^\circ + i \sen 240^\circ)
\]

\[
z = 4 \left(-\frac{1}{2} - i \frac{\sqrt{3}}{2} \right) = -2 - 2\sqrt{3}i
\]

3. Halla a y b para que se verifique la igualdad:

\[
5(a - 2i) = (3 + i)(b - i)
\]

\[
5a - 10i = 3b - i^2 - 3i + bi \Rightarrow 5a - 10i = 3b + 1 + (-3 + b)i
\]

Igualando las componentes

\[
\begin{align*}
5a &= 3b + 1 \\
-10 &= -3 + b
\end{align*}
\]

\[
\begin{align*}
b &= -7, \quad a = -4
\end{align*}
\]
4. Resuelve la ecuación: \(z^2 - 10z + 29 = 0 \)

\[
\begin{align*}
 z &= \frac{-(-10) \pm \sqrt{(-10)^2 - 4 \cdot 1 \cdot 29}}{2 \cdot 1} \\
 &= \frac{10 \pm \sqrt{100 - 116}}{2} \\
 &= \frac{10 \pm \sqrt{-16}}{2} \\
 &= \frac{10 \pm 4i}{2} \\
 &= \frac{10}{2} \pm \frac{4i}{2} \\
 &= 5 \pm 2i
\end{align*}
\]

Soluciones: \(z_1 = 5 + 2i, \quad z_2 = 5 - 2i \)

5. Calcula el valor que debe tomar \(x \) para que el módulo de \(\frac{x + 2i}{1 - i} \) sea igual a 2.

\[
\begin{align*}
 \frac{x + 2i}{1 - i} &= \frac{(x + 2i)(1 + i)}{(1 - i)(1 + i)} \\
 &= \frac{x + 2i^2 + x + 2i}{1 - i^2} \\
 &= \frac{x - 2 + (x + 2)i}{2} \\
 &= \frac{x - 2}{2} + \frac{x + 2}{2}i
\end{align*}
\]

Módulo = \(\sqrt{\left(\frac{x - 2}{2}\right)^2 + \left(\frac{x + 2}{2}\right)^2} = 2 \)

\[
\begin{align*}
 \sqrt{\left(\frac{x - 2}{2}\right)^2 + \left(\frac{x + 2}{2}\right)^2} &= 2 \\
 \Rightarrow \quad \frac{x^2 + 4}{2} &= 4 \\
 \Rightarrow \quad x^2 &= 4
\end{align*}
\]

\(x_1 = 2, \quad x_2 = -2 \)

Hay dos soluciones: \(x_1 = 2, \quad x_2 = -2 \)

6. Halla el lado del triángulo cuyos vértices son los afijos de las raíces cúbicas de \(4 \sqrt{3} - 4i \).

\[
\begin{align*}
 z &= \sqrt[3]{4 \sqrt{3} - 4i}
\end{align*}
\]

Expresamos \(4 \sqrt{3} - 4i \) en forma polar:

\[
\begin{align*}
 r &= \sqrt{(4 \sqrt{3})^2 + (-4)^2} = 8 \\
 \tan \alpha &= -\frac{4}{4 \sqrt{3}} \Rightarrow \alpha = 330^\circ \\
 4 \sqrt{3} - 4i &= 8 \text{cis} 330^\circ
\end{align*}
\]

\[
\begin{align*}
 z &= \sqrt[3]{8 \text{cis} 330^\circ} = \sqrt[3]{8} \text{cis} \frac{330^\circ + 360^\circ k}{3} \\
 & \Rightarrow \frac{z_1 = \sqrt[3]{8} \text{cis} 110^\circ}{z_2 = \sqrt[3]{8} \text{cis} 230^\circ} \\
 & \Rightarrow \frac{z_3 = \sqrt[3]{8} \text{cis} 350^\circ}{z_3 = \sqrt[3]{8} \text{cis} 350^\circ}
\end{align*}
\]

En el triángulo \(AOB \) conocemos dos lados, \(OA = OB = 2 \), y el ángulo comprendido, \(120^\circ \). Aplicando el teorema del coseno, obtenemos el lado del triángulo, \(AB \):

\[
\begin{align*}
 AB^2 &= 2^2 + 2^2 - 2 \cdot 2 \cdot 2 \cdot \cos 120^\circ = 12 \\
 \Rightarrow \quad AB &= \sqrt{12} = 2 \sqrt{3} \quad \text{u}
\end{align*}
\]
7. Representa gráficamente.

a) $1 \leq Im\ z \leq 5$

b) $|z| = 3$

c) $z + \bar{z} = -4$

8. Halla dos números complejos tales que su cociente sea 2_{150° y su producto 18_{90°.

\[
\frac{r_\alpha}{s_\beta} = 2_{150^\circ} \rightarrow \frac{r}{s} = 2; \quad \alpha - \beta = 150^\circ
\]

\[
r_\alpha \cdot s_\beta = 18_{90^\circ} \rightarrow r \cdot s = 18; \quad \alpha + \beta = 90^\circ
\]

Resolvemos los sistemas:

\[
\begin{align*}
\frac{r}{s} &= 2 \\
r \cdot s &= 18
\end{align*}
\]

Obtenemos:

\[
\begin{align*}
r &= 6 \\
s &= 3 \quad \beta = -30^\circ = 330^\circ
\end{align*}
\]

Los números son 6_{120° y 3_{330°. Otra posible solución es: 6_{300° y 3_{150°.

Unidad 6. Números complejos
9. Demuestra que \(|z \cdot \bar{z}| = |z|^2 \).

\[
z = a + bi \quad \bar{z} = a - bi \quad z \cdot \bar{z} = (a + bi)(a - bi) = a^2 - b^2i^2 = a^2 + b^2
\]

\[
|z| = \sqrt{a^2 + b^2} \rightarrow |z|^2 = (\sqrt{a^2 + b^2})^2 = a^2 + b^2
\]

10. Calcula \(\cos 120^\circ \) y \(\sen 120^\circ \) a partir del producto \(1_{90^\circ} \cdot 1_{30^\circ} \).

\[
1_{90^\circ} \cdot 1_{30^\circ} = 1(\cos 90^\circ + i \sen 90^\circ) \cdot 1(\cos 30^\circ + i \sen 30^\circ) =
\]

\[
= i \cdot \left(\frac{\sqrt{3}}{2} + i \frac{1}{2} \right) = -\frac{1}{2} + \frac{\sqrt{3}}{2}i
\]

\[
1_{90^\circ} \cdot 1_{30^\circ} = 1_{120^\circ} = 1(\cos 120^\circ + i \sen 120^\circ) = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \rightarrow
\]

\[
\rightarrow \cos 120^\circ = -\frac{1}{2}, \ \sen 120^\circ = \frac{\sqrt{3}}{2}
\]

11. Halla el número complejo \(z \) que se obtiene al transformar el complejo \(2 + 3i \) mediante un giro de \(30^\circ \) con centro en el origen.

Multiplicamos por \(1_{30^\circ} = 1(\cos 30^\circ + i \sen 30^\circ) \).

\[
z = (2 + 3i) \cdot 1_{30^\circ} = (2 + 3i) \cdot \left(\frac{\sqrt{3}}{2} + i \frac{1}{2} \right)
\]

\[
z = \sqrt{3} + \frac{3}{2}i^2 + i + \frac{3\sqrt{3}}{2}i
\]

\[
z = \frac{2\sqrt{3} - 3}{2} + \frac{2 + 3\sqrt{3}}{2}i
\]